Loading…
Simulations of non-integer upconversion in resonant six-wave scattering
Resonant upconversion through a sixth order relativistic nonlinearity resulting in a unique resonance was recently proposed [Malkin and Fisch, Phys. Rev. E 108, 045208 (2023)]. The high order resonance is a unique non-integer multiple of a driving pump frequency resulting in a frequency upshift by a...
Saved in:
Published in: | Physics of plasmas 2024-05, Vol.31 (5) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Resonant upconversion through a sixth order relativistic nonlinearity resulting in a unique resonance was recently proposed [Malkin and Fisch, Phys. Rev. E 108, 045208 (2023)]. The high order resonance is a unique non-integer multiple of a driving pump frequency resulting in a frequency upshift by a factor of
≈
3.73. We demonstrate the presence, unique requirements, and growth of this mode numerically. Through tuning waves to high amplitude, in a mildly underdense plasma, the six-photon process may grow more than other non-resonant but lower order processes. The growth of the high frequency mode remains below the nonlinear growth regime. However, extending current numerical results to more strongly coupled resonances with longer pulse propagation distances suggests a pathway to significant upconversion. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/5.0190674 |