Loading…

Using exponential smoothing methods to analysis COVID-19 time series

Exponential smoothing models are used to smooth time series data and treat the impact of Trend or Seasonal in the time series. There are several models including of smoothing: Simple Exponential Smoothing, Double Smoothing and Holt-Winters smoothing. Robust statistical methods in time series models...

Full description

Saved in:
Bibliographic Details
Main Authors: Abidi, Fadhil A., Radiy, Zainb Hasan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3092
creator Abidi, Fadhil A.
Radiy, Zainb Hasan
description Exponential smoothing models are used to smooth time series data and treat the impact of Trend or Seasonal in the time series. There are several models including of smoothing: Simple Exponential Smoothing, Double Smoothing and Holt-Winters smoothing. Robust statistical methods in time series models or in linear models (Regression, Experiment Design) they are a suitable to treat the problem of outlier values in data in order to obtain more reliable forecast results. In this paper, we applied the Robust Exponential smoothing method Compared with some anther exponential as :(Double smoothing, Holt-Winters Additive/Multiplicative smoothing, EST method) for estimation model parameters and forecasting are presented. and application of all these methods in Data of corona Pandemic (COVID-19) from Iraq in period (Mar. 2020 – Mar 2022), the robust exponential method is presented that applies the standard technique to preclean data from the outlier values in time series.We depended on R-packages functions as [ses(),EST, robiest(), hw(),…],it use to obtain smoothing parameters are robust. In this research we found Robust method have a good forecast performance for time series with an outlier values.
doi_str_mv 10.1063/5.0200417
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0200417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2949145624</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1687-a416d1faebb5d68b362588b2acd86797aef105ae9b57778508c6a22ead1238403</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0HAm7A1bzafR2mtFgq9WPEW3u2mNqW7WTcp2H9vS3saGIbhmSHkEdgImCpf5IhxxgToKzIAKaHQCtQ1GTBmRcFF-X1L7lLaMsat1mZAJssU2h_q_7rY-jYH3NHUxJg3J7fxeRPrRHOk2OLukEKi48XXbFKApTk0nibfB5_uyc0ad8k_XHRIltO3z_FHMV-8z8av86IDZXSBAlQNa_RVJWtlqlJxaUzFcVUbpa1GvwYm0dtK6iOcZGalkHOPNfDSCFYOydO5t-vj796n7LZx3x_JkuNWWBBSHScOyfM5lVYhYw6xdV0fGuwPDpg7veSku7xU_gPoEVf1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2949145624</pqid></control><display><type>conference_proceeding</type><title>Using exponential smoothing methods to analysis COVID-19 time series</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Abidi, Fadhil A. ; Radiy, Zainb Hasan</creator><contributor>Abid, Dhurgham Hassan ; Hamza, Bashar J. ; Abed, Azher M. ; Wadday, Ahmed Ghanim ; Al-Manea, Ahmed Razzaq Hasan ; Kadhim, Ali Najah ; Al-Musawi, Tariq J. ; Ibadi, Atheer Kadhim ; AL-Hasnawi, Dhafer Manea Hachim ; Faisal, Mustafa Dakhil ; Jaaz, Hussein Abad Gazi ; Majdi, Ali S.</contributor><creatorcontrib>Abidi, Fadhil A. ; Radiy, Zainb Hasan ; Abid, Dhurgham Hassan ; Hamza, Bashar J. ; Abed, Azher M. ; Wadday, Ahmed Ghanim ; Al-Manea, Ahmed Razzaq Hasan ; Kadhim, Ali Najah ; Al-Musawi, Tariq J. ; Ibadi, Atheer Kadhim ; AL-Hasnawi, Dhafer Manea Hachim ; Faisal, Mustafa Dakhil ; Jaaz, Hussein Abad Gazi ; Majdi, Ali S.</creatorcontrib><description>Exponential smoothing models are used to smooth time series data and treat the impact of Trend or Seasonal in the time series. There are several models including of smoothing: Simple Exponential Smoothing, Double Smoothing and Holt-Winters smoothing. Robust statistical methods in time series models or in linear models (Regression, Experiment Design) they are a suitable to treat the problem of outlier values in data in order to obtain more reliable forecast results. In this paper, we applied the Robust Exponential smoothing method Compared with some anther exponential as :(Double smoothing, Holt-Winters Additive/Multiplicative smoothing, EST method) for estimation model parameters and forecasting are presented. and application of all these methods in Data of corona Pandemic (COVID-19) from Iraq in period (Mar. 2020 – Mar 2022), the robust exponential method is presented that applies the standard technique to preclean data from the outlier values in time series.We depended on R-packages functions as [ses(),EST, robiest(), hw(),…],it use to obtain smoothing parameters are robust. In this research we found Robust method have a good forecast performance for time series with an outlier values.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0200417</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>COVID-19 ; Design of experiments ; Mathematical models ; Outliers (statistics) ; Parameter robustness ; Robustness (mathematics) ; Smoothing ; Statistical analysis ; Statistical methods ; Time series</subject><ispartof>AIP conference proceedings, 2024, Vol.3092 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Abid, Dhurgham Hassan</contributor><contributor>Hamza, Bashar J.</contributor><contributor>Abed, Azher M.</contributor><contributor>Wadday, Ahmed Ghanim</contributor><contributor>Al-Manea, Ahmed Razzaq Hasan</contributor><contributor>Kadhim, Ali Najah</contributor><contributor>Al-Musawi, Tariq J.</contributor><contributor>Ibadi, Atheer Kadhim</contributor><contributor>AL-Hasnawi, Dhafer Manea Hachim</contributor><contributor>Faisal, Mustafa Dakhil</contributor><contributor>Jaaz, Hussein Abad Gazi</contributor><contributor>Majdi, Ali S.</contributor><creatorcontrib>Abidi, Fadhil A.</creatorcontrib><creatorcontrib>Radiy, Zainb Hasan</creatorcontrib><title>Using exponential smoothing methods to analysis COVID-19 time series</title><title>AIP conference proceedings</title><description>Exponential smoothing models are used to smooth time series data and treat the impact of Trend or Seasonal in the time series. There are several models including of smoothing: Simple Exponential Smoothing, Double Smoothing and Holt-Winters smoothing. Robust statistical methods in time series models or in linear models (Regression, Experiment Design) they are a suitable to treat the problem of outlier values in data in order to obtain more reliable forecast results. In this paper, we applied the Robust Exponential smoothing method Compared with some anther exponential as :(Double smoothing, Holt-Winters Additive/Multiplicative smoothing, EST method) for estimation model parameters and forecasting are presented. and application of all these methods in Data of corona Pandemic (COVID-19) from Iraq in period (Mar. 2020 – Mar 2022), the robust exponential method is presented that applies the standard technique to preclean data from the outlier values in time series.We depended on R-packages functions as [ses(),EST, robiest(), hw(),…],it use to obtain smoothing parameters are robust. In this research we found Robust method have a good forecast performance for time series with an outlier values.</description><subject>COVID-19</subject><subject>Design of experiments</subject><subject>Mathematical models</subject><subject>Outliers (statistics)</subject><subject>Parameter robustness</subject><subject>Robustness (mathematics)</subject><subject>Smoothing</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Time series</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0HAm7A1bzafR2mtFgq9WPEW3u2mNqW7WTcp2H9vS3saGIbhmSHkEdgImCpf5IhxxgToKzIAKaHQCtQ1GTBmRcFF-X1L7lLaMsat1mZAJssU2h_q_7rY-jYH3NHUxJg3J7fxeRPrRHOk2OLukEKi48XXbFKApTk0nibfB5_uyc0ad8k_XHRIltO3z_FHMV-8z8av86IDZXSBAlQNa_RVJWtlqlJxaUzFcVUbpa1GvwYm0dtK6iOcZGalkHOPNfDSCFYOydO5t-vj796n7LZx3x_JkuNWWBBSHScOyfM5lVYhYw6xdV0fGuwPDpg7veSku7xU_gPoEVf1</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>Abidi, Fadhil A.</creator><creator>Radiy, Zainb Hasan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240308</creationdate><title>Using exponential smoothing methods to analysis COVID-19 time series</title><author>Abidi, Fadhil A. ; Radiy, Zainb Hasan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1687-a416d1faebb5d68b362588b2acd86797aef105ae9b57778508c6a22ead1238403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>COVID-19</topic><topic>Design of experiments</topic><topic>Mathematical models</topic><topic>Outliers (statistics)</topic><topic>Parameter robustness</topic><topic>Robustness (mathematics)</topic><topic>Smoothing</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abidi, Fadhil A.</creatorcontrib><creatorcontrib>Radiy, Zainb Hasan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abidi, Fadhil A.</au><au>Radiy, Zainb Hasan</au><au>Abid, Dhurgham Hassan</au><au>Hamza, Bashar J.</au><au>Abed, Azher M.</au><au>Wadday, Ahmed Ghanim</au><au>Al-Manea, Ahmed Razzaq Hasan</au><au>Kadhim, Ali Najah</au><au>Al-Musawi, Tariq J.</au><au>Ibadi, Atheer Kadhim</au><au>AL-Hasnawi, Dhafer Manea Hachim</au><au>Faisal, Mustafa Dakhil</au><au>Jaaz, Hussein Abad Gazi</au><au>Majdi, Ali S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using exponential smoothing methods to analysis COVID-19 time series</atitle><btitle>AIP conference proceedings</btitle><date>2024-03-08</date><risdate>2024</risdate><volume>3092</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Exponential smoothing models are used to smooth time series data and treat the impact of Trend or Seasonal in the time series. There are several models including of smoothing: Simple Exponential Smoothing, Double Smoothing and Holt-Winters smoothing. Robust statistical methods in time series models or in linear models (Regression, Experiment Design) they are a suitable to treat the problem of outlier values in data in order to obtain more reliable forecast results. In this paper, we applied the Robust Exponential smoothing method Compared with some anther exponential as :(Double smoothing, Holt-Winters Additive/Multiplicative smoothing, EST method) for estimation model parameters and forecasting are presented. and application of all these methods in Data of corona Pandemic (COVID-19) from Iraq in period (Mar. 2020 – Mar 2022), the robust exponential method is presented that applies the standard technique to preclean data from the outlier values in time series.We depended on R-packages functions as [ses(),EST, robiest(), hw(),…],it use to obtain smoothing parameters are robust. In this research we found Robust method have a good forecast performance for time series with an outlier values.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0200417</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3092 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0200417
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects COVID-19
Design of experiments
Mathematical models
Outliers (statistics)
Parameter robustness
Robustness (mathematics)
Smoothing
Statistical analysis
Statistical methods
Time series
title Using exponential smoothing methods to analysis COVID-19 time series
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20exponential%20smoothing%20methods%20to%20analysis%20COVID-19%20time%20series&rft.btitle=AIP%20conference%20proceedings&rft.au=Abidi,%20Fadhil%20A.&rft.date=2024-03-08&rft.volume=3092&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0200417&rft_dat=%3Cproquest_scita%3E2949145624%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1687-a416d1faebb5d68b362588b2acd86797aef105ae9b57778508c6a22ead1238403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2949145624&rft_id=info:pmid/&rfr_iscdi=true