Loading…

Application of the Fourier method to the study of a hyperbolic integro-differential equation in a rectangular domain

In the paper we investigate the solvability of the initial-boundary value problem for a nonhomogeneous integro-differential wave equation in a rectangular domain, when the integral kernel of the integral term is a known function. First, the uniqueness of the solution of the direct problem is establi...

Full description

Saved in:
Bibliographic Details
Main Authors: Safarov, Jurabek, Rakhmonov, Askar, Safarova, Maftunakhon
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3004
creator Safarov, Jurabek
Rakhmonov, Askar
Safarova, Maftunakhon
description In the paper we investigate the solvability of the initial-boundary value problem for a nonhomogeneous integro-differential wave equation in a rectangular domain, when the integral kernel of the integral term is a known function. First, the uniqueness of the solution of the direct problem is established using the completeness property of the system of eigenfunctions of the corresponding homogeneous Dirichlet problem for the Laplace operator, further the existence of a solution to the direct problem is proved.
doi_str_mv 10.1063/5.0201252
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0201252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954998052</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1682-8ba6f311a1d56fca0b4aec27bf02914e195f93df60430caf654696027dab3d33</originalsourceid><addsrcrecordid>eNotkM1qwzAQhEVpoWnaQ99A0FvBqf5tHUNo2kKglxx6E7IlJQqO5MjyIW9fJ85pYfl2dmYAeMVogZGgH3yBCMKEkzsww5zjohRY3IMZQpIVhNG_R_DU9weEiCzLagbysuta3-jsY4DRwby3cB2H5G2CR5v30cAcr9s-D-Z8QTTcnzub6jjeQR-y3aVYGO-cTTZkr1toT8Mk6MNIJ9tkHXZDqxM08ah9eAYPTre9fbnNOdiuP7er72Lz-_WzWm6KDouKFFWthaMYa2y4cI1GNdO2IWXtRveYWSy5k9Q4gRhFjXaCMyEFIqXRNTWUzsHbJNuleBpsn9VhTBbGj4pIzqSsECcj9T5RfePz1bbqkj_qdFYYqUupiqtbqfQffO9qbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2954998052</pqid></control><display><type>conference_proceeding</type><title>Application of the Fourier method to the study of a hyperbolic integro-differential equation in a rectangular domain</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Safarov, Jurabek ; Rakhmonov, Askar ; Safarova, Maftunakhon</creator><contributor>Shadimetov, Kholmat M. ; Hayotov, Abdullo R. ; Durdiev, Durdimurod K. ; Jalolov, Ozodjon I. ; Babaev, Samandar S.</contributor><creatorcontrib>Safarov, Jurabek ; Rakhmonov, Askar ; Safarova, Maftunakhon ; Shadimetov, Kholmat M. ; Hayotov, Abdullo R. ; Durdiev, Durdimurod K. ; Jalolov, Ozodjon I. ; Babaev, Samandar S.</creatorcontrib><description>In the paper we investigate the solvability of the initial-boundary value problem for a nonhomogeneous integro-differential wave equation in a rectangular domain, when the integral kernel of the integral term is a known function. First, the uniqueness of the solution of the direct problem is established using the completeness property of the system of eigenfunctions of the corresponding homogeneous Dirichlet problem for the Laplace operator, further the existence of a solution to the direct problem is proved.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0201252</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary value problems ; Differential equations ; Dirichlet problem ; Eigenvectors ; Operators (mathematics) ; Wave equations</subject><ispartof>AIP conference proceedings, 2024, Vol.3004 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,786,787,23911,23912,25121,27905,27906</link.rule.ids></links><search><contributor>Shadimetov, Kholmat M.</contributor><contributor>Hayotov, Abdullo R.</contributor><contributor>Durdiev, Durdimurod K.</contributor><contributor>Jalolov, Ozodjon I.</contributor><contributor>Babaev, Samandar S.</contributor><creatorcontrib>Safarov, Jurabek</creatorcontrib><creatorcontrib>Rakhmonov, Askar</creatorcontrib><creatorcontrib>Safarova, Maftunakhon</creatorcontrib><title>Application of the Fourier method to the study of a hyperbolic integro-differential equation in a rectangular domain</title><title>AIP conference proceedings</title><description>In the paper we investigate the solvability of the initial-boundary value problem for a nonhomogeneous integro-differential wave equation in a rectangular domain, when the integral kernel of the integral term is a known function. First, the uniqueness of the solution of the direct problem is established using the completeness property of the system of eigenfunctions of the corresponding homogeneous Dirichlet problem for the Laplace operator, further the existence of a solution to the direct problem is proved.</description><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Dirichlet problem</subject><subject>Eigenvectors</subject><subject>Operators (mathematics)</subject><subject>Wave equations</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1qwzAQhEVpoWnaQ99A0FvBqf5tHUNo2kKglxx6E7IlJQqO5MjyIW9fJ85pYfl2dmYAeMVogZGgH3yBCMKEkzsww5zjohRY3IMZQpIVhNG_R_DU9weEiCzLagbysuta3-jsY4DRwby3cB2H5G2CR5v30cAcr9s-D-Z8QTTcnzub6jjeQR-y3aVYGO-cTTZkr1toT8Mk6MNIJ9tkHXZDqxM08ah9eAYPTre9fbnNOdiuP7er72Lz-_WzWm6KDouKFFWthaMYa2y4cI1GNdO2IWXtRveYWSy5k9Q4gRhFjXaCMyEFIqXRNTWUzsHbJNuleBpsn9VhTBbGj4pIzqSsECcj9T5RfePz1bbqkj_qdFYYqUupiqtbqfQffO9qbA</recordid><startdate>20240311</startdate><enddate>20240311</enddate><creator>Safarov, Jurabek</creator><creator>Rakhmonov, Askar</creator><creator>Safarova, Maftunakhon</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240311</creationdate><title>Application of the Fourier method to the study of a hyperbolic integro-differential equation in a rectangular domain</title><author>Safarov, Jurabek ; Rakhmonov, Askar ; Safarova, Maftunakhon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1682-8ba6f311a1d56fca0b4aec27bf02914e195f93df60430caf654696027dab3d33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Dirichlet problem</topic><topic>Eigenvectors</topic><topic>Operators (mathematics)</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safarov, Jurabek</creatorcontrib><creatorcontrib>Rakhmonov, Askar</creatorcontrib><creatorcontrib>Safarova, Maftunakhon</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safarov, Jurabek</au><au>Rakhmonov, Askar</au><au>Safarova, Maftunakhon</au><au>Shadimetov, Kholmat M.</au><au>Hayotov, Abdullo R.</au><au>Durdiev, Durdimurod K.</au><au>Jalolov, Ozodjon I.</au><au>Babaev, Samandar S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of the Fourier method to the study of a hyperbolic integro-differential equation in a rectangular domain</atitle><btitle>AIP conference proceedings</btitle><date>2024-03-11</date><risdate>2024</risdate><volume>3004</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the paper we investigate the solvability of the initial-boundary value problem for a nonhomogeneous integro-differential wave equation in a rectangular domain, when the integral kernel of the integral term is a known function. First, the uniqueness of the solution of the direct problem is established using the completeness property of the system of eigenfunctions of the corresponding homogeneous Dirichlet problem for the Laplace operator, further the existence of a solution to the direct problem is proved.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0201252</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3004 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0201252
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Boundary value problems
Differential equations
Dirichlet problem
Eigenvectors
Operators (mathematics)
Wave equations
title Application of the Fourier method to the study of a hyperbolic integro-differential equation in a rectangular domain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20the%20Fourier%20method%20to%20the%20study%20of%20a%20hyperbolic%20integro-differential%20equation%20in%20a%20rectangular%20domain&rft.btitle=AIP%20conference%20proceedings&rft.au=Safarov,%20Jurabek&rft.date=2024-03-11&rft.volume=3004&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0201252&rft_dat=%3Cproquest_scita%3E2954998052%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1682-8ba6f311a1d56fca0b4aec27bf02914e195f93df60430caf654696027dab3d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2954998052&rft_id=info:pmid/&rfr_iscdi=true