Loading…
Application of the Fourier method to the study of a hyperbolic integro-differential equation in a rectangular domain
In the paper we investigate the solvability of the initial-boundary value problem for a nonhomogeneous integro-differential wave equation in a rectangular domain, when the integral kernel of the integral term is a known function. First, the uniqueness of the solution of the direct problem is establi...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3004 |
creator | Safarov, Jurabek Rakhmonov, Askar Safarova, Maftunakhon |
description | In the paper we investigate the solvability of the initial-boundary value problem for a nonhomogeneous integro-differential wave equation in a rectangular domain, when the integral kernel of the integral term is a known function. First, the uniqueness of the solution of the direct problem is established using the completeness property of the system of eigenfunctions of the corresponding homogeneous Dirichlet problem for the Laplace operator, further the existence of a solution to the direct problem is proved. |
doi_str_mv | 10.1063/5.0201252 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0201252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954998052</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1682-8ba6f311a1d56fca0b4aec27bf02914e195f93df60430caf654696027dab3d33</originalsourceid><addsrcrecordid>eNotkM1qwzAQhEVpoWnaQ99A0FvBqf5tHUNo2kKglxx6E7IlJQqO5MjyIW9fJ85pYfl2dmYAeMVogZGgH3yBCMKEkzsww5zjohRY3IMZQpIVhNG_R_DU9weEiCzLagbysuta3-jsY4DRwby3cB2H5G2CR5v30cAcr9s-D-Z8QTTcnzub6jjeQR-y3aVYGO-cTTZkr1toT8Mk6MNIJ9tkHXZDqxM08ah9eAYPTre9fbnNOdiuP7er72Lz-_WzWm6KDouKFFWthaMYa2y4cI1GNdO2IWXtRveYWSy5k9Q4gRhFjXaCMyEFIqXRNTWUzsHbJNuleBpsn9VhTBbGj4pIzqSsECcj9T5RfePz1bbqkj_qdFYYqUupiqtbqfQffO9qbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2954998052</pqid></control><display><type>conference_proceeding</type><title>Application of the Fourier method to the study of a hyperbolic integro-differential equation in a rectangular domain</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Safarov, Jurabek ; Rakhmonov, Askar ; Safarova, Maftunakhon</creator><contributor>Shadimetov, Kholmat M. ; Hayotov, Abdullo R. ; Durdiev, Durdimurod K. ; Jalolov, Ozodjon I. ; Babaev, Samandar S.</contributor><creatorcontrib>Safarov, Jurabek ; Rakhmonov, Askar ; Safarova, Maftunakhon ; Shadimetov, Kholmat M. ; Hayotov, Abdullo R. ; Durdiev, Durdimurod K. ; Jalolov, Ozodjon I. ; Babaev, Samandar S.</creatorcontrib><description>In the paper we investigate the solvability of the initial-boundary value problem for a nonhomogeneous integro-differential wave equation in a rectangular domain, when the integral kernel of the integral term is a known function. First, the uniqueness of the solution of the direct problem is established using the completeness property of the system of eigenfunctions of the corresponding homogeneous Dirichlet problem for the Laplace operator, further the existence of a solution to the direct problem is proved.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0201252</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary value problems ; Differential equations ; Dirichlet problem ; Eigenvectors ; Operators (mathematics) ; Wave equations</subject><ispartof>AIP conference proceedings, 2024, Vol.3004 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,786,787,23911,23912,25121,27905,27906</link.rule.ids></links><search><contributor>Shadimetov, Kholmat M.</contributor><contributor>Hayotov, Abdullo R.</contributor><contributor>Durdiev, Durdimurod K.</contributor><contributor>Jalolov, Ozodjon I.</contributor><contributor>Babaev, Samandar S.</contributor><creatorcontrib>Safarov, Jurabek</creatorcontrib><creatorcontrib>Rakhmonov, Askar</creatorcontrib><creatorcontrib>Safarova, Maftunakhon</creatorcontrib><title>Application of the Fourier method to the study of a hyperbolic integro-differential equation in a rectangular domain</title><title>AIP conference proceedings</title><description>In the paper we investigate the solvability of the initial-boundary value problem for a nonhomogeneous integro-differential wave equation in a rectangular domain, when the integral kernel of the integral term is a known function. First, the uniqueness of the solution of the direct problem is established using the completeness property of the system of eigenfunctions of the corresponding homogeneous Dirichlet problem for the Laplace operator, further the existence of a solution to the direct problem is proved.</description><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Dirichlet problem</subject><subject>Eigenvectors</subject><subject>Operators (mathematics)</subject><subject>Wave equations</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1qwzAQhEVpoWnaQ99A0FvBqf5tHUNo2kKglxx6E7IlJQqO5MjyIW9fJ85pYfl2dmYAeMVogZGgH3yBCMKEkzsww5zjohRY3IMZQpIVhNG_R_DU9weEiCzLagbysuta3-jsY4DRwby3cB2H5G2CR5v30cAcr9s-D-Z8QTTcnzub6jjeQR-y3aVYGO-cTTZkr1toT8Mk6MNIJ9tkHXZDqxM08ah9eAYPTre9fbnNOdiuP7er72Lz-_WzWm6KDouKFFWthaMYa2y4cI1GNdO2IWXtRveYWSy5k9Q4gRhFjXaCMyEFIqXRNTWUzsHbJNuleBpsn9VhTBbGj4pIzqSsECcj9T5RfePz1bbqkj_qdFYYqUupiqtbqfQffO9qbA</recordid><startdate>20240311</startdate><enddate>20240311</enddate><creator>Safarov, Jurabek</creator><creator>Rakhmonov, Askar</creator><creator>Safarova, Maftunakhon</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240311</creationdate><title>Application of the Fourier method to the study of a hyperbolic integro-differential equation in a rectangular domain</title><author>Safarov, Jurabek ; Rakhmonov, Askar ; Safarova, Maftunakhon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1682-8ba6f311a1d56fca0b4aec27bf02914e195f93df60430caf654696027dab3d33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Dirichlet problem</topic><topic>Eigenvectors</topic><topic>Operators (mathematics)</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safarov, Jurabek</creatorcontrib><creatorcontrib>Rakhmonov, Askar</creatorcontrib><creatorcontrib>Safarova, Maftunakhon</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safarov, Jurabek</au><au>Rakhmonov, Askar</au><au>Safarova, Maftunakhon</au><au>Shadimetov, Kholmat M.</au><au>Hayotov, Abdullo R.</au><au>Durdiev, Durdimurod K.</au><au>Jalolov, Ozodjon I.</au><au>Babaev, Samandar S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of the Fourier method to the study of a hyperbolic integro-differential equation in a rectangular domain</atitle><btitle>AIP conference proceedings</btitle><date>2024-03-11</date><risdate>2024</risdate><volume>3004</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the paper we investigate the solvability of the initial-boundary value problem for a nonhomogeneous integro-differential wave equation in a rectangular domain, when the integral kernel of the integral term is a known function. First, the uniqueness of the solution of the direct problem is established using the completeness property of the system of eigenfunctions of the corresponding homogeneous Dirichlet problem for the Laplace operator, further the existence of a solution to the direct problem is proved.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0201252</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3004 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0201252 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Boundary value problems Differential equations Dirichlet problem Eigenvectors Operators (mathematics) Wave equations |
title | Application of the Fourier method to the study of a hyperbolic integro-differential equation in a rectangular domain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20the%20Fourier%20method%20to%20the%20study%20of%20a%20hyperbolic%20integro-differential%20equation%20in%20a%20rectangular%20domain&rft.btitle=AIP%20conference%20proceedings&rft.au=Safarov,%20Jurabek&rft.date=2024-03-11&rft.volume=3004&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0201252&rft_dat=%3Cproquest_scita%3E2954998052%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1682-8ba6f311a1d56fca0b4aec27bf02914e195f93df60430caf654696027dab3d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2954998052&rft_id=info:pmid/&rfr_iscdi=true |