Loading…
Quantification of chirality based on electric toroidal monopole
Chirality ubiquitously appears in nature; however, its quantification remains obscure owing to the lack of microscopic description at the quantum-mechanical level. We propose a way of evaluating chirality in terms of the electric toroidal monopole, a practical entity of time-reversal even pseudoscal...
Saved in:
Published in: | The Journal of chemical physics 2024-05, Vol.160 (18) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chirality ubiquitously appears in nature; however, its quantification remains obscure owing to the lack of microscopic description at the quantum-mechanical level. We propose a way of evaluating chirality in terms of the electric toroidal monopole, a practical entity of time-reversal even pseudoscalar (parity-odd) objects reflecting relevant electronic wave functions. For this purpose, we analyze a twisted methane molecule at the quantum-mechanical level, showing that the electric toroidal monopoles become a quantitative indicator for chirality. In the twisted methane, we clarify that the handedness of chirality corresponds to the sign of the expectation value of the electric toroidal monopole and that the most important ingredient is the modulation of the spin-dependent imaginary hopping between the hydrogen atoms, while the relativistic spin–orbit coupling within the carbon atom is irrelevant for chirality. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0204254 |