Loading…
Understanding the microstructure evolution of carbon-doped Sb2Te3 phase change material for high thermal stability memory application
The Sb2Te3 phase change material shows a growth-dominated crystallization mechanism with fast phase transition but poor thermal stability of the amorphous state. This work investigated the effects of carbon doping on the thermal stability, microstructure, and electrical properties of the Sb2Te3 mate...
Saved in:
Published in: | Applied physics letters 2024-05, Vol.124 (20) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-da39cf2e35fd207e9d1cc9fb01d7eb23a269d9e39279beffb3878e92921916e03 |
container_end_page | |
container_issue | 20 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 124 |
creator | Zhang, Mengyu Wang, Ruobing Zou, Xixi Song, Sannian Bao, Yun Wu, Liangcai Song, Zhitang Zhou, Xilin |
description | The Sb2Te3 phase change material shows a growth-dominated crystallization mechanism with fast phase transition but poor thermal stability of the amorphous state. This work investigated the effects of carbon doping on the thermal stability, microstructure, and electrical properties of the Sb2Te3 material. The 10-year data retention temperature of the material increased to ∼147.3 °C and the size of the grains was limited to ∼10 nm by carbon doping. The formation of the C cluster upon crystallization was found at the grain boundaries, which was accelerated as the temperature increased due to the break of the Sb–C bonds. The memory device based on the carbon-doped Sb2Te3 material exhibited a switching speed of 15 ns and an endurance of ∼105 cycles with a resistance ratio of more than two orders of magnitude. This work suggests that the carbon-doped Sb2Te3 material is a promising candidate for memory applications that require high thermal stability, fast speed, and high endurance. |
doi_str_mv | 10.1063/5.0206244 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0206244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054242526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-da39cf2e35fd207e9d1cc9fb01d7eb23a269d9e39279beffb3878e92921916e03</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4A8ssQIpxY886iWqeEmVWNCuI8ceN66SONgOUj-A_yahXbMazejMvboXoVtKFpTk_DFbEEZylqZnaEZJUSSc0uU5mhFCeJKLjF6iqxD245oxzmfoZ9tp8CHKTttuh2MNuLXKuxD9oOLgAcO3a4ZoXYedwUr6ynWJdj1o_FmxDXDc1zIAVrXsduOzjOCtbLBxHtd2V0-Svh0Po0dlGxsPuIXW-QOWfd9YJSfpa3RhZBPg5jTnaPvyvFm9JeuP1_fV0zpRbFnEREsulGHAM6MZKUBoqpQwFaG6gIpxyXKhBXDBClGBMRVfFksQTDAqaA6Ez9HdUbf37muAEMu9G3w3WpacZClLWcbykbo_UlMPwYMpe29b6Q8lJeXUcpmVp5ZH9uHIBmXjX5Z_4F_bgn73</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054242526</pqid></control><display><type>article</type><title>Understanding the microstructure evolution of carbon-doped Sb2Te3 phase change material for high thermal stability memory application</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Zhang, Mengyu ; Wang, Ruobing ; Zou, Xixi ; Song, Sannian ; Bao, Yun ; Wu, Liangcai ; Song, Zhitang ; Zhou, Xilin</creator><creatorcontrib>Zhang, Mengyu ; Wang, Ruobing ; Zou, Xixi ; Song, Sannian ; Bao, Yun ; Wu, Liangcai ; Song, Zhitang ; Zhou, Xilin</creatorcontrib><description>The Sb2Te3 phase change material shows a growth-dominated crystallization mechanism with fast phase transition but poor thermal stability of the amorphous state. This work investigated the effects of carbon doping on the thermal stability, microstructure, and electrical properties of the Sb2Te3 material. The 10-year data retention temperature of the material increased to ∼147.3 °C and the size of the grains was limited to ∼10 nm by carbon doping. The formation of the C cluster upon crystallization was found at the grain boundaries, which was accelerated as the temperature increased due to the break of the Sb–C bonds. The memory device based on the carbon-doped Sb2Te3 material exhibited a switching speed of 15 ns and an endurance of ∼105 cycles with a resistance ratio of more than two orders of magnitude. This work suggests that the carbon-doped Sb2Te3 material is a promising candidate for memory applications that require high thermal stability, fast speed, and high endurance.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0206244</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carbon ; Crystallization ; Doping ; Electrical properties ; Endurance ; Grain boundaries ; Memory devices ; Microstructure ; Phase change materials ; Phase transitions ; Thermal stability</subject><ispartof>Applied physics letters, 2024-05, Vol.124 (20)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-da39cf2e35fd207e9d1cc9fb01d7eb23a269d9e39279beffb3878e92921916e03</cites><orcidid>0000-0002-9791-5965 ; 0009-0006-7343-7184 ; 0009-0007-6702-8138 ; 0000-0003-4135-5070 ; 0000-0003-3734-8417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0206244$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Zhang, Mengyu</creatorcontrib><creatorcontrib>Wang, Ruobing</creatorcontrib><creatorcontrib>Zou, Xixi</creatorcontrib><creatorcontrib>Song, Sannian</creatorcontrib><creatorcontrib>Bao, Yun</creatorcontrib><creatorcontrib>Wu, Liangcai</creatorcontrib><creatorcontrib>Song, Zhitang</creatorcontrib><creatorcontrib>Zhou, Xilin</creatorcontrib><title>Understanding the microstructure evolution of carbon-doped Sb2Te3 phase change material for high thermal stability memory application</title><title>Applied physics letters</title><description>The Sb2Te3 phase change material shows a growth-dominated crystallization mechanism with fast phase transition but poor thermal stability of the amorphous state. This work investigated the effects of carbon doping on the thermal stability, microstructure, and electrical properties of the Sb2Te3 material. The 10-year data retention temperature of the material increased to ∼147.3 °C and the size of the grains was limited to ∼10 nm by carbon doping. The formation of the C cluster upon crystallization was found at the grain boundaries, which was accelerated as the temperature increased due to the break of the Sb–C bonds. The memory device based on the carbon-doped Sb2Te3 material exhibited a switching speed of 15 ns and an endurance of ∼105 cycles with a resistance ratio of more than two orders of magnitude. This work suggests that the carbon-doped Sb2Te3 material is a promising candidate for memory applications that require high thermal stability, fast speed, and high endurance.</description><subject>Carbon</subject><subject>Crystallization</subject><subject>Doping</subject><subject>Electrical properties</subject><subject>Endurance</subject><subject>Grain boundaries</subject><subject>Memory devices</subject><subject>Microstructure</subject><subject>Phase change materials</subject><subject>Phase transitions</subject><subject>Thermal stability</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4A8ssQIpxY886iWqeEmVWNCuI8ceN66SONgOUj-A_yahXbMazejMvboXoVtKFpTk_DFbEEZylqZnaEZJUSSc0uU5mhFCeJKLjF6iqxD245oxzmfoZ9tp8CHKTttuh2MNuLXKuxD9oOLgAcO3a4ZoXYedwUr6ynWJdj1o_FmxDXDc1zIAVrXsduOzjOCtbLBxHtd2V0-Svh0Po0dlGxsPuIXW-QOWfd9YJSfpa3RhZBPg5jTnaPvyvFm9JeuP1_fV0zpRbFnEREsulGHAM6MZKUBoqpQwFaG6gIpxyXKhBXDBClGBMRVfFksQTDAqaA6Ez9HdUbf37muAEMu9G3w3WpacZClLWcbykbo_UlMPwYMpe29b6Q8lJeXUcpmVp5ZH9uHIBmXjX5Z_4F_bgn73</recordid><startdate>20240513</startdate><enddate>20240513</enddate><creator>Zhang, Mengyu</creator><creator>Wang, Ruobing</creator><creator>Zou, Xixi</creator><creator>Song, Sannian</creator><creator>Bao, Yun</creator><creator>Wu, Liangcai</creator><creator>Song, Zhitang</creator><creator>Zhou, Xilin</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9791-5965</orcidid><orcidid>https://orcid.org/0009-0006-7343-7184</orcidid><orcidid>https://orcid.org/0009-0007-6702-8138</orcidid><orcidid>https://orcid.org/0000-0003-4135-5070</orcidid><orcidid>https://orcid.org/0000-0003-3734-8417</orcidid></search><sort><creationdate>20240513</creationdate><title>Understanding the microstructure evolution of carbon-doped Sb2Te3 phase change material for high thermal stability memory application</title><author>Zhang, Mengyu ; Wang, Ruobing ; Zou, Xixi ; Song, Sannian ; Bao, Yun ; Wu, Liangcai ; Song, Zhitang ; Zhou, Xilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-da39cf2e35fd207e9d1cc9fb01d7eb23a269d9e39279beffb3878e92921916e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Crystallization</topic><topic>Doping</topic><topic>Electrical properties</topic><topic>Endurance</topic><topic>Grain boundaries</topic><topic>Memory devices</topic><topic>Microstructure</topic><topic>Phase change materials</topic><topic>Phase transitions</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Mengyu</creatorcontrib><creatorcontrib>Wang, Ruobing</creatorcontrib><creatorcontrib>Zou, Xixi</creatorcontrib><creatorcontrib>Song, Sannian</creatorcontrib><creatorcontrib>Bao, Yun</creatorcontrib><creatorcontrib>Wu, Liangcai</creatorcontrib><creatorcontrib>Song, Zhitang</creatorcontrib><creatorcontrib>Zhou, Xilin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Mengyu</au><au>Wang, Ruobing</au><au>Zou, Xixi</au><au>Song, Sannian</au><au>Bao, Yun</au><au>Wu, Liangcai</au><au>Song, Zhitang</au><au>Zhou, Xilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the microstructure evolution of carbon-doped Sb2Te3 phase change material for high thermal stability memory application</atitle><jtitle>Applied physics letters</jtitle><date>2024-05-13</date><risdate>2024</risdate><volume>124</volume><issue>20</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The Sb2Te3 phase change material shows a growth-dominated crystallization mechanism with fast phase transition but poor thermal stability of the amorphous state. This work investigated the effects of carbon doping on the thermal stability, microstructure, and electrical properties of the Sb2Te3 material. The 10-year data retention temperature of the material increased to ∼147.3 °C and the size of the grains was limited to ∼10 nm by carbon doping. The formation of the C cluster upon crystallization was found at the grain boundaries, which was accelerated as the temperature increased due to the break of the Sb–C bonds. The memory device based on the carbon-doped Sb2Te3 material exhibited a switching speed of 15 ns and an endurance of ∼105 cycles with a resistance ratio of more than two orders of magnitude. This work suggests that the carbon-doped Sb2Te3 material is a promising candidate for memory applications that require high thermal stability, fast speed, and high endurance.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0206244</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9791-5965</orcidid><orcidid>https://orcid.org/0009-0006-7343-7184</orcidid><orcidid>https://orcid.org/0009-0007-6702-8138</orcidid><orcidid>https://orcid.org/0000-0003-4135-5070</orcidid><orcidid>https://orcid.org/0000-0003-3734-8417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2024-05, Vol.124 (20) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0206244 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | Carbon Crystallization Doping Electrical properties Endurance Grain boundaries Memory devices Microstructure Phase change materials Phase transitions Thermal stability |
title | Understanding the microstructure evolution of carbon-doped Sb2Te3 phase change material for high thermal stability memory application |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20microstructure%20evolution%20of%20carbon-doped%20Sb2Te3%20phase%20change%20material%20for%20high%20thermal%20stability%20memory%20application&rft.jtitle=Applied%20physics%20letters&rft.au=Zhang,%20Mengyu&rft.date=2024-05-13&rft.volume=124&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0206244&rft_dat=%3Cproquest_scita%3E3054242526%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-da39cf2e35fd207e9d1cc9fb01d7eb23a269d9e39279beffb3878e92921916e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3054242526&rft_id=info:pmid/&rfr_iscdi=true |