Loading…

Understanding the microstructure evolution of carbon-doped Sb2Te3 phase change material for high thermal stability memory application

The Sb2Te3 phase change material shows a growth-dominated crystallization mechanism with fast phase transition but poor thermal stability of the amorphous state. This work investigated the effects of carbon doping on the thermal stability, microstructure, and electrical properties of the Sb2Te3 mate...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2024-05, Vol.124 (20)
Main Authors: Zhang, Mengyu, Wang, Ruobing, Zou, Xixi, Song, Sannian, Bao, Yun, Wu, Liangcai, Song, Zhitang, Zhou, Xilin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-da39cf2e35fd207e9d1cc9fb01d7eb23a269d9e39279beffb3878e92921916e03
container_end_page
container_issue 20
container_start_page
container_title Applied physics letters
container_volume 124
creator Zhang, Mengyu
Wang, Ruobing
Zou, Xixi
Song, Sannian
Bao, Yun
Wu, Liangcai
Song, Zhitang
Zhou, Xilin
description The Sb2Te3 phase change material shows a growth-dominated crystallization mechanism with fast phase transition but poor thermal stability of the amorphous state. This work investigated the effects of carbon doping on the thermal stability, microstructure, and electrical properties of the Sb2Te3 material. The 10-year data retention temperature of the material increased to ∼147.3 °C and the size of the grains was limited to ∼10 nm by carbon doping. The formation of the C cluster upon crystallization was found at the grain boundaries, which was accelerated as the temperature increased due to the break of the Sb–C bonds. The memory device based on the carbon-doped Sb2Te3 material exhibited a switching speed of 15 ns and an endurance of ∼105 cycles with a resistance ratio of more than two orders of magnitude. This work suggests that the carbon-doped Sb2Te3 material is a promising candidate for memory applications that require high thermal stability, fast speed, and high endurance.
doi_str_mv 10.1063/5.0206244
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0206244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054242526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-da39cf2e35fd207e9d1cc9fb01d7eb23a269d9e39279beffb3878e92921916e03</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4A8ssQIpxY886iWqeEmVWNCuI8ceN66SONgOUj-A_yahXbMazejMvboXoVtKFpTk_DFbEEZylqZnaEZJUSSc0uU5mhFCeJKLjF6iqxD245oxzmfoZ9tp8CHKTttuh2MNuLXKuxD9oOLgAcO3a4ZoXYedwUr6ynWJdj1o_FmxDXDc1zIAVrXsduOzjOCtbLBxHtd2V0-Svh0Po0dlGxsPuIXW-QOWfd9YJSfpa3RhZBPg5jTnaPvyvFm9JeuP1_fV0zpRbFnEREsulGHAM6MZKUBoqpQwFaG6gIpxyXKhBXDBClGBMRVfFksQTDAqaA6Ez9HdUbf37muAEMu9G3w3WpacZClLWcbykbo_UlMPwYMpe29b6Q8lJeXUcpmVp5ZH9uHIBmXjX5Z_4F_bgn73</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054242526</pqid></control><display><type>article</type><title>Understanding the microstructure evolution of carbon-doped Sb2Te3 phase change material for high thermal stability memory application</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Zhang, Mengyu ; Wang, Ruobing ; Zou, Xixi ; Song, Sannian ; Bao, Yun ; Wu, Liangcai ; Song, Zhitang ; Zhou, Xilin</creator><creatorcontrib>Zhang, Mengyu ; Wang, Ruobing ; Zou, Xixi ; Song, Sannian ; Bao, Yun ; Wu, Liangcai ; Song, Zhitang ; Zhou, Xilin</creatorcontrib><description>The Sb2Te3 phase change material shows a growth-dominated crystallization mechanism with fast phase transition but poor thermal stability of the amorphous state. This work investigated the effects of carbon doping on the thermal stability, microstructure, and electrical properties of the Sb2Te3 material. The 10-year data retention temperature of the material increased to ∼147.3 °C and the size of the grains was limited to ∼10 nm by carbon doping. The formation of the C cluster upon crystallization was found at the grain boundaries, which was accelerated as the temperature increased due to the break of the Sb–C bonds. The memory device based on the carbon-doped Sb2Te3 material exhibited a switching speed of 15 ns and an endurance of ∼105 cycles with a resistance ratio of more than two orders of magnitude. This work suggests that the carbon-doped Sb2Te3 material is a promising candidate for memory applications that require high thermal stability, fast speed, and high endurance.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0206244</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carbon ; Crystallization ; Doping ; Electrical properties ; Endurance ; Grain boundaries ; Memory devices ; Microstructure ; Phase change materials ; Phase transitions ; Thermal stability</subject><ispartof>Applied physics letters, 2024-05, Vol.124 (20)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-da39cf2e35fd207e9d1cc9fb01d7eb23a269d9e39279beffb3878e92921916e03</cites><orcidid>0000-0002-9791-5965 ; 0009-0006-7343-7184 ; 0009-0007-6702-8138 ; 0000-0003-4135-5070 ; 0000-0003-3734-8417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0206244$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Zhang, Mengyu</creatorcontrib><creatorcontrib>Wang, Ruobing</creatorcontrib><creatorcontrib>Zou, Xixi</creatorcontrib><creatorcontrib>Song, Sannian</creatorcontrib><creatorcontrib>Bao, Yun</creatorcontrib><creatorcontrib>Wu, Liangcai</creatorcontrib><creatorcontrib>Song, Zhitang</creatorcontrib><creatorcontrib>Zhou, Xilin</creatorcontrib><title>Understanding the microstructure evolution of carbon-doped Sb2Te3 phase change material for high thermal stability memory application</title><title>Applied physics letters</title><description>The Sb2Te3 phase change material shows a growth-dominated crystallization mechanism with fast phase transition but poor thermal stability of the amorphous state. This work investigated the effects of carbon doping on the thermal stability, microstructure, and electrical properties of the Sb2Te3 material. The 10-year data retention temperature of the material increased to ∼147.3 °C and the size of the grains was limited to ∼10 nm by carbon doping. The formation of the C cluster upon crystallization was found at the grain boundaries, which was accelerated as the temperature increased due to the break of the Sb–C bonds. The memory device based on the carbon-doped Sb2Te3 material exhibited a switching speed of 15 ns and an endurance of ∼105 cycles with a resistance ratio of more than two orders of magnitude. This work suggests that the carbon-doped Sb2Te3 material is a promising candidate for memory applications that require high thermal stability, fast speed, and high endurance.</description><subject>Carbon</subject><subject>Crystallization</subject><subject>Doping</subject><subject>Electrical properties</subject><subject>Endurance</subject><subject>Grain boundaries</subject><subject>Memory devices</subject><subject>Microstructure</subject><subject>Phase change materials</subject><subject>Phase transitions</subject><subject>Thermal stability</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4A8ssQIpxY886iWqeEmVWNCuI8ceN66SONgOUj-A_yahXbMazejMvboXoVtKFpTk_DFbEEZylqZnaEZJUSSc0uU5mhFCeJKLjF6iqxD245oxzmfoZ9tp8CHKTttuh2MNuLXKuxD9oOLgAcO3a4ZoXYedwUr6ynWJdj1o_FmxDXDc1zIAVrXsduOzjOCtbLBxHtd2V0-Svh0Po0dlGxsPuIXW-QOWfd9YJSfpa3RhZBPg5jTnaPvyvFm9JeuP1_fV0zpRbFnEREsulGHAM6MZKUBoqpQwFaG6gIpxyXKhBXDBClGBMRVfFksQTDAqaA6Ez9HdUbf37muAEMu9G3w3WpacZClLWcbykbo_UlMPwYMpe29b6Q8lJeXUcpmVp5ZH9uHIBmXjX5Z_4F_bgn73</recordid><startdate>20240513</startdate><enddate>20240513</enddate><creator>Zhang, Mengyu</creator><creator>Wang, Ruobing</creator><creator>Zou, Xixi</creator><creator>Song, Sannian</creator><creator>Bao, Yun</creator><creator>Wu, Liangcai</creator><creator>Song, Zhitang</creator><creator>Zhou, Xilin</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9791-5965</orcidid><orcidid>https://orcid.org/0009-0006-7343-7184</orcidid><orcidid>https://orcid.org/0009-0007-6702-8138</orcidid><orcidid>https://orcid.org/0000-0003-4135-5070</orcidid><orcidid>https://orcid.org/0000-0003-3734-8417</orcidid></search><sort><creationdate>20240513</creationdate><title>Understanding the microstructure evolution of carbon-doped Sb2Te3 phase change material for high thermal stability memory application</title><author>Zhang, Mengyu ; Wang, Ruobing ; Zou, Xixi ; Song, Sannian ; Bao, Yun ; Wu, Liangcai ; Song, Zhitang ; Zhou, Xilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-da39cf2e35fd207e9d1cc9fb01d7eb23a269d9e39279beffb3878e92921916e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Crystallization</topic><topic>Doping</topic><topic>Electrical properties</topic><topic>Endurance</topic><topic>Grain boundaries</topic><topic>Memory devices</topic><topic>Microstructure</topic><topic>Phase change materials</topic><topic>Phase transitions</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Mengyu</creatorcontrib><creatorcontrib>Wang, Ruobing</creatorcontrib><creatorcontrib>Zou, Xixi</creatorcontrib><creatorcontrib>Song, Sannian</creatorcontrib><creatorcontrib>Bao, Yun</creatorcontrib><creatorcontrib>Wu, Liangcai</creatorcontrib><creatorcontrib>Song, Zhitang</creatorcontrib><creatorcontrib>Zhou, Xilin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Mengyu</au><au>Wang, Ruobing</au><au>Zou, Xixi</au><au>Song, Sannian</au><au>Bao, Yun</au><au>Wu, Liangcai</au><au>Song, Zhitang</au><au>Zhou, Xilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the microstructure evolution of carbon-doped Sb2Te3 phase change material for high thermal stability memory application</atitle><jtitle>Applied physics letters</jtitle><date>2024-05-13</date><risdate>2024</risdate><volume>124</volume><issue>20</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The Sb2Te3 phase change material shows a growth-dominated crystallization mechanism with fast phase transition but poor thermal stability of the amorphous state. This work investigated the effects of carbon doping on the thermal stability, microstructure, and electrical properties of the Sb2Te3 material. The 10-year data retention temperature of the material increased to ∼147.3 °C and the size of the grains was limited to ∼10 nm by carbon doping. The formation of the C cluster upon crystallization was found at the grain boundaries, which was accelerated as the temperature increased due to the break of the Sb–C bonds. The memory device based on the carbon-doped Sb2Te3 material exhibited a switching speed of 15 ns and an endurance of ∼105 cycles with a resistance ratio of more than two orders of magnitude. This work suggests that the carbon-doped Sb2Te3 material is a promising candidate for memory applications that require high thermal stability, fast speed, and high endurance.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0206244</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9791-5965</orcidid><orcidid>https://orcid.org/0009-0006-7343-7184</orcidid><orcidid>https://orcid.org/0009-0007-6702-8138</orcidid><orcidid>https://orcid.org/0000-0003-4135-5070</orcidid><orcidid>https://orcid.org/0000-0003-3734-8417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-05, Vol.124 (20)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0206244
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Carbon
Crystallization
Doping
Electrical properties
Endurance
Grain boundaries
Memory devices
Microstructure
Phase change materials
Phase transitions
Thermal stability
title Understanding the microstructure evolution of carbon-doped Sb2Te3 phase change material for high thermal stability memory application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20microstructure%20evolution%20of%20carbon-doped%20Sb2Te3%20phase%20change%20material%20for%20high%20thermal%20stability%20memory%20application&rft.jtitle=Applied%20physics%20letters&rft.au=Zhang,%20Mengyu&rft.date=2024-05-13&rft.volume=124&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0206244&rft_dat=%3Cproquest_scita%3E3054242526%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-da39cf2e35fd207e9d1cc9fb01d7eb23a269d9e39279beffb3878e92921916e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3054242526&rft_id=info:pmid/&rfr_iscdi=true