Loading…
Algorithm development for drought mapping using imagery Sentinel-2
Drought mapping is needed in mitigation efforts. Several applications of rapid drought mapping techniques using remote sensing such as the normalized difference vegetation index (NDVI) have not provided accurate results. This study aims to quickly develop a drought mapping technique using the NDVI d...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3043 |
creator | Satriawan, Puthut Omar Hidayah, Entin Halik, Gusfan |
description | Drought mapping is needed in mitigation efforts. Several applications of rapid drought mapping techniques using remote sensing such as the normalized difference vegetation index (NDVI) have not provided accurate results. This study aims to quickly develop a drought mapping technique using the NDVI development algorithm to produce an accurate drought map. The development of the new algorithm is based on evaluating the NDVI approach by combining water-sensitive bands. Sentinel-2 image data for three months in the dry season is used as an input model. The drought-level classification was treated to get the best model. The reliability of the model is measured by the overall accuracy value (OA) and kappa which compares the model drought map results from moderate to extreme levels with the results of drought identification in the field. Accuracy results obtained a KAPPA value of 0.83 and 80% OA. The results of this map can be used for drought mitigation. |
doi_str_mv | 10.1063/5.0206474 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0206474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143433813</sourcerecordid><originalsourceid>FETCH-LOGICAL-p634-d580dbf66662a9016eb56bf1600e559bf66c8345eb719765e1e8690a076efe123</originalsourceid><addsrcrecordid>eNotkE9Lw0AQxRdRMFYPfoOANyF1JvsvOdZiVSh4sAdvS9JM0pQkG3cTod_ehHYOM4f3Y97jMfaIsERQ_EUuIQYltLhiAUqJkVaorlkAkIooFvznlt15fwSIU62TgL2umsq6eji0YUF_1Ni-pW4IS-vCwtmxOgxhm_V93VXh6Oddt1lF7hR-T1jdURPF9-ymzBpPD5e7YLvN2279EW2_3j_Xq23UKy6iQiZQ5KWaJs5SQEW5VHmJCoCkTGdln3AhKdeYaiUJKVEpZKAVlYQxX7Cn89ve2d-R_GCOdnTd5Gg4Ci44T5BP1POZ8vt6yIbadqZ3U2Z3MghmrshIc6mI_wMiF1dJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3143433813</pqid></control><display><type>conference_proceeding</type><title>Algorithm development for drought mapping using imagery Sentinel-2</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Satriawan, Puthut Omar ; Hidayah, Entin ; Halik, Gusfan</creator><contributor>Trigunarsyah, Bambang ; Aman, Mohamad Yusri bin ; Endrayana, Dimas Bayu ; Anggraini, Retno ; Aprianti, Evi ; Hung, Wen-Yi ; Ambarwati, Lasmini</contributor><creatorcontrib>Satriawan, Puthut Omar ; Hidayah, Entin ; Halik, Gusfan ; Trigunarsyah, Bambang ; Aman, Mohamad Yusri bin ; Endrayana, Dimas Bayu ; Anggraini, Retno ; Aprianti, Evi ; Hung, Wen-Yi ; Ambarwati, Lasmini</creatorcontrib><description>Drought mapping is needed in mitigation efforts. Several applications of rapid drought mapping techniques using remote sensing such as the normalized difference vegetation index (NDVI) have not provided accurate results. This study aims to quickly develop a drought mapping technique using the NDVI development algorithm to produce an accurate drought map. The development of the new algorithm is based on evaluating the NDVI approach by combining water-sensitive bands. Sentinel-2 image data for three months in the dry season is used as an input model. The drought-level classification was treated to get the best model. The reliability of the model is measured by the overall accuracy value (OA) and kappa which compares the model drought map results from moderate to extreme levels with the results of drought identification in the field. Accuracy results obtained a KAPPA value of 0.83 and 80% OA. The results of this map can be used for drought mitigation.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0206474</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Drought ; Dry season ; Extreme values ; Mapping ; Normalized difference vegetative index ; Remote sensing</subject><ispartof>AIP conference proceedings, 2024, Vol.3043 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids></links><search><contributor>Trigunarsyah, Bambang</contributor><contributor>Aman, Mohamad Yusri bin</contributor><contributor>Endrayana, Dimas Bayu</contributor><contributor>Anggraini, Retno</contributor><contributor>Aprianti, Evi</contributor><contributor>Hung, Wen-Yi</contributor><contributor>Ambarwati, Lasmini</contributor><creatorcontrib>Satriawan, Puthut Omar</creatorcontrib><creatorcontrib>Hidayah, Entin</creatorcontrib><creatorcontrib>Halik, Gusfan</creatorcontrib><title>Algorithm development for drought mapping using imagery Sentinel-2</title><title>AIP conference proceedings</title><description>Drought mapping is needed in mitigation efforts. Several applications of rapid drought mapping techniques using remote sensing such as the normalized difference vegetation index (NDVI) have not provided accurate results. This study aims to quickly develop a drought mapping technique using the NDVI development algorithm to produce an accurate drought map. The development of the new algorithm is based on evaluating the NDVI approach by combining water-sensitive bands. Sentinel-2 image data for three months in the dry season is used as an input model. The drought-level classification was treated to get the best model. The reliability of the model is measured by the overall accuracy value (OA) and kappa which compares the model drought map results from moderate to extreme levels with the results of drought identification in the field. Accuracy results obtained a KAPPA value of 0.83 and 80% OA. The results of this map can be used for drought mitigation.</description><subject>Algorithms</subject><subject>Drought</subject><subject>Dry season</subject><subject>Extreme values</subject><subject>Mapping</subject><subject>Normalized difference vegetative index</subject><subject>Remote sensing</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9Lw0AQxRdRMFYPfoOANyF1JvsvOdZiVSh4sAdvS9JM0pQkG3cTod_ehHYOM4f3Y97jMfaIsERQ_EUuIQYltLhiAUqJkVaorlkAkIooFvznlt15fwSIU62TgL2umsq6eji0YUF_1Ni-pW4IS-vCwtmxOgxhm_V93VXh6Oddt1lF7hR-T1jdURPF9-ymzBpPD5e7YLvN2279EW2_3j_Xq23UKy6iQiZQ5KWaJs5SQEW5VHmJCoCkTGdln3AhKdeYaiUJKVEpZKAVlYQxX7Cn89ve2d-R_GCOdnTd5Gg4Ci44T5BP1POZ8vt6yIbadqZ3U2Z3MghmrshIc6mI_wMiF1dJ</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Satriawan, Puthut Omar</creator><creator>Hidayah, Entin</creator><creator>Halik, Gusfan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241212</creationdate><title>Algorithm development for drought mapping using imagery Sentinel-2</title><author>Satriawan, Puthut Omar ; Hidayah, Entin ; Halik, Gusfan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p634-d580dbf66662a9016eb56bf1600e559bf66c8345eb719765e1e8690a076efe123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Drought</topic><topic>Dry season</topic><topic>Extreme values</topic><topic>Mapping</topic><topic>Normalized difference vegetative index</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satriawan, Puthut Omar</creatorcontrib><creatorcontrib>Hidayah, Entin</creatorcontrib><creatorcontrib>Halik, Gusfan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satriawan, Puthut Omar</au><au>Hidayah, Entin</au><au>Halik, Gusfan</au><au>Trigunarsyah, Bambang</au><au>Aman, Mohamad Yusri bin</au><au>Endrayana, Dimas Bayu</au><au>Anggraini, Retno</au><au>Aprianti, Evi</au><au>Hung, Wen-Yi</au><au>Ambarwati, Lasmini</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Algorithm development for drought mapping using imagery Sentinel-2</atitle><btitle>AIP conference proceedings</btitle><date>2024-12-12</date><risdate>2024</risdate><volume>3043</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Drought mapping is needed in mitigation efforts. Several applications of rapid drought mapping techniques using remote sensing such as the normalized difference vegetation index (NDVI) have not provided accurate results. This study aims to quickly develop a drought mapping technique using the NDVI development algorithm to produce an accurate drought map. The development of the new algorithm is based on evaluating the NDVI approach by combining water-sensitive bands. Sentinel-2 image data for three months in the dry season is used as an input model. The drought-level classification was treated to get the best model. The reliability of the model is measured by the overall accuracy value (OA) and kappa which compares the model drought map results from moderate to extreme levels with the results of drought identification in the field. Accuracy results obtained a KAPPA value of 0.83 and 80% OA. The results of this map can be used for drought mitigation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0206474</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3043 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0206474 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Algorithms Drought Dry season Extreme values Mapping Normalized difference vegetative index Remote sensing |
title | Algorithm development for drought mapping using imagery Sentinel-2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Algorithm%20development%20for%20drought%20mapping%20using%20imagery%20Sentinel-2&rft.btitle=AIP%20conference%20proceedings&rft.au=Satriawan,%20Puthut%20Omar&rft.date=2024-12-12&rft.volume=3043&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0206474&rft_dat=%3Cproquest_scita%3E3143433813%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p634-d580dbf66662a9016eb56bf1600e559bf66c8345eb719765e1e8690a076efe123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3143433813&rft_id=info:pmid/&rfr_iscdi=true |