Loading…

Algorithm development for drought mapping using imagery Sentinel-2

Drought mapping is needed in mitigation efforts. Several applications of rapid drought mapping techniques using remote sensing such as the normalized difference vegetation index (NDVI) have not provided accurate results. This study aims to quickly develop a drought mapping technique using the NDVI d...

Full description

Saved in:
Bibliographic Details
Main Authors: Satriawan, Puthut Omar, Hidayah, Entin, Halik, Gusfan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3043
creator Satriawan, Puthut Omar
Hidayah, Entin
Halik, Gusfan
description Drought mapping is needed in mitigation efforts. Several applications of rapid drought mapping techniques using remote sensing such as the normalized difference vegetation index (NDVI) have not provided accurate results. This study aims to quickly develop a drought mapping technique using the NDVI development algorithm to produce an accurate drought map. The development of the new algorithm is based on evaluating the NDVI approach by combining water-sensitive bands. Sentinel-2 image data for three months in the dry season is used as an input model. The drought-level classification was treated to get the best model. The reliability of the model is measured by the overall accuracy value (OA) and kappa which compares the model drought map results from moderate to extreme levels with the results of drought identification in the field. Accuracy results obtained a KAPPA value of 0.83 and 80% OA. The results of this map can be used for drought mitigation.
doi_str_mv 10.1063/5.0206474
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0206474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143433813</sourcerecordid><originalsourceid>FETCH-LOGICAL-p634-d580dbf66662a9016eb56bf1600e559bf66c8345eb719765e1e8690a076efe123</originalsourceid><addsrcrecordid>eNotkE9Lw0AQxRdRMFYPfoOANyF1JvsvOdZiVSh4sAdvS9JM0pQkG3cTod_ehHYOM4f3Y97jMfaIsERQ_EUuIQYltLhiAUqJkVaorlkAkIooFvznlt15fwSIU62TgL2umsq6eji0YUF_1Ni-pW4IS-vCwtmxOgxhm_V93VXh6Oddt1lF7hR-T1jdURPF9-ymzBpPD5e7YLvN2279EW2_3j_Xq23UKy6iQiZQ5KWaJs5SQEW5VHmJCoCkTGdln3AhKdeYaiUJKVEpZKAVlYQxX7Cn89ve2d-R_GCOdnTd5Gg4Ci44T5BP1POZ8vt6yIbadqZ3U2Z3MghmrshIc6mI_wMiF1dJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3143433813</pqid></control><display><type>conference_proceeding</type><title>Algorithm development for drought mapping using imagery Sentinel-2</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Satriawan, Puthut Omar ; Hidayah, Entin ; Halik, Gusfan</creator><contributor>Trigunarsyah, Bambang ; Aman, Mohamad Yusri bin ; Endrayana, Dimas Bayu ; Anggraini, Retno ; Aprianti, Evi ; Hung, Wen-Yi ; Ambarwati, Lasmini</contributor><creatorcontrib>Satriawan, Puthut Omar ; Hidayah, Entin ; Halik, Gusfan ; Trigunarsyah, Bambang ; Aman, Mohamad Yusri bin ; Endrayana, Dimas Bayu ; Anggraini, Retno ; Aprianti, Evi ; Hung, Wen-Yi ; Ambarwati, Lasmini</creatorcontrib><description>Drought mapping is needed in mitigation efforts. Several applications of rapid drought mapping techniques using remote sensing such as the normalized difference vegetation index (NDVI) have not provided accurate results. This study aims to quickly develop a drought mapping technique using the NDVI development algorithm to produce an accurate drought map. The development of the new algorithm is based on evaluating the NDVI approach by combining water-sensitive bands. Sentinel-2 image data for three months in the dry season is used as an input model. The drought-level classification was treated to get the best model. The reliability of the model is measured by the overall accuracy value (OA) and kappa which compares the model drought map results from moderate to extreme levels with the results of drought identification in the field. Accuracy results obtained a KAPPA value of 0.83 and 80% OA. The results of this map can be used for drought mitigation.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0206474</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Drought ; Dry season ; Extreme values ; Mapping ; Normalized difference vegetative index ; Remote sensing</subject><ispartof>AIP conference proceedings, 2024, Vol.3043 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids></links><search><contributor>Trigunarsyah, Bambang</contributor><contributor>Aman, Mohamad Yusri bin</contributor><contributor>Endrayana, Dimas Bayu</contributor><contributor>Anggraini, Retno</contributor><contributor>Aprianti, Evi</contributor><contributor>Hung, Wen-Yi</contributor><contributor>Ambarwati, Lasmini</contributor><creatorcontrib>Satriawan, Puthut Omar</creatorcontrib><creatorcontrib>Hidayah, Entin</creatorcontrib><creatorcontrib>Halik, Gusfan</creatorcontrib><title>Algorithm development for drought mapping using imagery Sentinel-2</title><title>AIP conference proceedings</title><description>Drought mapping is needed in mitigation efforts. Several applications of rapid drought mapping techniques using remote sensing such as the normalized difference vegetation index (NDVI) have not provided accurate results. This study aims to quickly develop a drought mapping technique using the NDVI development algorithm to produce an accurate drought map. The development of the new algorithm is based on evaluating the NDVI approach by combining water-sensitive bands. Sentinel-2 image data for three months in the dry season is used as an input model. The drought-level classification was treated to get the best model. The reliability of the model is measured by the overall accuracy value (OA) and kappa which compares the model drought map results from moderate to extreme levels with the results of drought identification in the field. Accuracy results obtained a KAPPA value of 0.83 and 80% OA. The results of this map can be used for drought mitigation.</description><subject>Algorithms</subject><subject>Drought</subject><subject>Dry season</subject><subject>Extreme values</subject><subject>Mapping</subject><subject>Normalized difference vegetative index</subject><subject>Remote sensing</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9Lw0AQxRdRMFYPfoOANyF1JvsvOdZiVSh4sAdvS9JM0pQkG3cTod_ehHYOM4f3Y97jMfaIsERQ_EUuIQYltLhiAUqJkVaorlkAkIooFvznlt15fwSIU62TgL2umsq6eji0YUF_1Ni-pW4IS-vCwtmxOgxhm_V93VXh6Oddt1lF7hR-T1jdURPF9-ymzBpPD5e7YLvN2279EW2_3j_Xq23UKy6iQiZQ5KWaJs5SQEW5VHmJCoCkTGdln3AhKdeYaiUJKVEpZKAVlYQxX7Cn89ve2d-R_GCOdnTd5Gg4Ci44T5BP1POZ8vt6yIbadqZ3U2Z3MghmrshIc6mI_wMiF1dJ</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Satriawan, Puthut Omar</creator><creator>Hidayah, Entin</creator><creator>Halik, Gusfan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241212</creationdate><title>Algorithm development for drought mapping using imagery Sentinel-2</title><author>Satriawan, Puthut Omar ; Hidayah, Entin ; Halik, Gusfan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p634-d580dbf66662a9016eb56bf1600e559bf66c8345eb719765e1e8690a076efe123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Drought</topic><topic>Dry season</topic><topic>Extreme values</topic><topic>Mapping</topic><topic>Normalized difference vegetative index</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satriawan, Puthut Omar</creatorcontrib><creatorcontrib>Hidayah, Entin</creatorcontrib><creatorcontrib>Halik, Gusfan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satriawan, Puthut Omar</au><au>Hidayah, Entin</au><au>Halik, Gusfan</au><au>Trigunarsyah, Bambang</au><au>Aman, Mohamad Yusri bin</au><au>Endrayana, Dimas Bayu</au><au>Anggraini, Retno</au><au>Aprianti, Evi</au><au>Hung, Wen-Yi</au><au>Ambarwati, Lasmini</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Algorithm development for drought mapping using imagery Sentinel-2</atitle><btitle>AIP conference proceedings</btitle><date>2024-12-12</date><risdate>2024</risdate><volume>3043</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Drought mapping is needed in mitigation efforts. Several applications of rapid drought mapping techniques using remote sensing such as the normalized difference vegetation index (NDVI) have not provided accurate results. This study aims to quickly develop a drought mapping technique using the NDVI development algorithm to produce an accurate drought map. The development of the new algorithm is based on evaluating the NDVI approach by combining water-sensitive bands. Sentinel-2 image data for three months in the dry season is used as an input model. The drought-level classification was treated to get the best model. The reliability of the model is measured by the overall accuracy value (OA) and kappa which compares the model drought map results from moderate to extreme levels with the results of drought identification in the field. Accuracy results obtained a KAPPA value of 0.83 and 80% OA. The results of this map can be used for drought mitigation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0206474</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3043 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0206474
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Algorithms
Drought
Dry season
Extreme values
Mapping
Normalized difference vegetative index
Remote sensing
title Algorithm development for drought mapping using imagery Sentinel-2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Algorithm%20development%20for%20drought%20mapping%20using%20imagery%20Sentinel-2&rft.btitle=AIP%20conference%20proceedings&rft.au=Satriawan,%20Puthut%20Omar&rft.date=2024-12-12&rft.volume=3043&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0206474&rft_dat=%3Cproquest_scita%3E3143433813%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p634-d580dbf66662a9016eb56bf1600e559bf66c8345eb719765e1e8690a076efe123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3143433813&rft_id=info:pmid/&rfr_iscdi=true