Loading…
Accurate in situ rock density measurement with cosmic ray muon radiography
Muon radiography, which relies on measuring the absorption and attenuation of muons as they pass through matters, offers a new imaging technique capable of revealing the internal structure of large objects. Recent technological advancement allows for the application or testing of muon radiography in...
Saved in:
Published in: | Journal of applied physics 2024-05, Vol.135 (20) |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c217t-bba1bf416f391cd56b77d293b58934278e255eedb013163e09b162fbf849ef883 |
container_end_page | |
container_issue | 20 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 135 |
creator | Pang, Jie Li, Zhiwei Dong, Shuning Li, Jingtai Mao, Xin Ding, Hao Wang, Hao Guo, Xiaoming Liu, Lei Zhang, Jianming Feng, Xinzhou Liu, Bin Ouyang, Xiaoping Han, Ran |
description | Muon radiography, which relies on measuring the absorption and attenuation of muons as they pass through matters, offers a new imaging technique capable of revealing the internal structure of large objects. Recent technological advancement allows for the application or testing of muon radiography in various fields, including mining, civil engineering, security check, etc. This study investigates the factors that influence muon radiography, which is used in density inversion, through simulations and experiments. The materials considered for density inversion include water, standard rock, and iron. Our simulation studies show that the number of events detected and selected has an impact on the reconstruction results, and several factors, such as multiple Coulomb scattering processes, recording time, and spatial resolution, which influence the number of muons, must be taken into account when measuring the rock density. We design and conduct a laboratory scale experiment based on the simulation results. We filter the 220 h of recording signals through time coincidence and straight-line fitting to obtain the selected events. Our results reveal that the statistical error of muons survival ratio in recording time significantly impacts the inversion result and decreases the error can improve accuracy greatly. In the experiment, the deviation between the inversion mean value and the expected value can be reduced to 2.4%–2.9% for iron, 7% for water, and 1.5% for standard rock. This density inversion approach provides insight into future density detection of underground structures. |
doi_str_mv | 10.1063/5.0207047 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0207047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061476470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-bba1bf416f391cd56b77d293b58934278e255eedb013163e09b162fbf849ef883</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwJNCdaZpmuS4LH6y4EXPJUlTN6tt1iRF9t9b2T17mhnmYQZeQi4RbhFqdsdvoQQBlTgiMwSpCsE5HJMZQImFVEKdkrOUNgCIkqkZeVlYO0adHfUDTT6PNAb7SVs3TMOO9k6nMbreDZn--LymNqTeWxr1tBvDMDWtDx9Rb9e7c3LS6a_kLg51Tt4f7t-WT8Xq9fF5uVgVtkSRC2M0mq7CumMKbctrI0RbKma4VKwqhXQl5861BpBhzRwog3XZmU5WynVSsjm52t_dxvA9upSbTRjjML1sGNRYiboSMKnrvbIxpBRd12yj73XcNQjNX1QNbw5RTfZmb5P1WWcfhn_wL84GaCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061476470</pqid></control><display><type>article</type><title>Accurate in situ rock density measurement with cosmic ray muon radiography</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Pang, Jie ; Li, Zhiwei ; Dong, Shuning ; Li, Jingtai ; Mao, Xin ; Ding, Hao ; Wang, Hao ; Guo, Xiaoming ; Liu, Lei ; Zhang, Jianming ; Feng, Xinzhou ; Liu, Bin ; Ouyang, Xiaoping ; Han, Ran</creator><creatorcontrib>Pang, Jie ; Li, Zhiwei ; Dong, Shuning ; Li, Jingtai ; Mao, Xin ; Ding, Hao ; Wang, Hao ; Guo, Xiaoming ; Liu, Lei ; Zhang, Jianming ; Feng, Xinzhou ; Liu, Bin ; Ouyang, Xiaoping ; Han, Ran</creatorcontrib><description>Muon radiography, which relies on measuring the absorption and attenuation of muons as they pass through matters, offers a new imaging technique capable of revealing the internal structure of large objects. Recent technological advancement allows for the application or testing of muon radiography in various fields, including mining, civil engineering, security check, etc. This study investigates the factors that influence muon radiography, which is used in density inversion, through simulations and experiments. The materials considered for density inversion include water, standard rock, and iron. Our simulation studies show that the number of events detected and selected has an impact on the reconstruction results, and several factors, such as multiple Coulomb scattering processes, recording time, and spatial resolution, which influence the number of muons, must be taken into account when measuring the rock density. We design and conduct a laboratory scale experiment based on the simulation results. We filter the 220 h of recording signals through time coincidence and straight-line fitting to obtain the selected events. Our results reveal that the statistical error of muons survival ratio in recording time significantly impacts the inversion result and decreases the error can improve accuracy greatly. In the experiment, the deviation between the inversion mean value and the expected value can be reduced to 2.4%–2.9% for iron, 7% for water, and 1.5% for standard rock. This density inversion approach provides insight into future density detection of underground structures.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0207047</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cosmic rays ; Density measurement ; Expected values ; Imaging techniques ; Iron ; Muons ; Radiography ; Recording ; Spatial resolution ; Straight line fitting ; Underground structures</subject><ispartof>Journal of applied physics, 2024-05, Vol.135 (20)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-bba1bf416f391cd56b77d293b58934278e255eedb013163e09b162fbf849ef883</cites><orcidid>0009-0008-5250-0409 ; 0000-0001-7505-5899 ; 0000-0002-7716-5116 ; 0000-0001-8474-2869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pang, Jie</creatorcontrib><creatorcontrib>Li, Zhiwei</creatorcontrib><creatorcontrib>Dong, Shuning</creatorcontrib><creatorcontrib>Li, Jingtai</creatorcontrib><creatorcontrib>Mao, Xin</creatorcontrib><creatorcontrib>Ding, Hao</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Guo, Xiaoming</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhang, Jianming</creatorcontrib><creatorcontrib>Feng, Xinzhou</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Han, Ran</creatorcontrib><title>Accurate in situ rock density measurement with cosmic ray muon radiography</title><title>Journal of applied physics</title><description>Muon radiography, which relies on measuring the absorption and attenuation of muons as they pass through matters, offers a new imaging technique capable of revealing the internal structure of large objects. Recent technological advancement allows for the application or testing of muon radiography in various fields, including mining, civil engineering, security check, etc. This study investigates the factors that influence muon radiography, which is used in density inversion, through simulations and experiments. The materials considered for density inversion include water, standard rock, and iron. Our simulation studies show that the number of events detected and selected has an impact on the reconstruction results, and several factors, such as multiple Coulomb scattering processes, recording time, and spatial resolution, which influence the number of muons, must be taken into account when measuring the rock density. We design and conduct a laboratory scale experiment based on the simulation results. We filter the 220 h of recording signals through time coincidence and straight-line fitting to obtain the selected events. Our results reveal that the statistical error of muons survival ratio in recording time significantly impacts the inversion result and decreases the error can improve accuracy greatly. In the experiment, the deviation between the inversion mean value and the expected value can be reduced to 2.4%–2.9% for iron, 7% for water, and 1.5% for standard rock. This density inversion approach provides insight into future density detection of underground structures.</description><subject>Cosmic rays</subject><subject>Density measurement</subject><subject>Expected values</subject><subject>Imaging techniques</subject><subject>Iron</subject><subject>Muons</subject><subject>Radiography</subject><subject>Recording</subject><subject>Spatial resolution</subject><subject>Straight line fitting</subject><subject>Underground structures</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90E1LxDAQBuAgCq6rB_9BwJNCdaZpmuS4LH6y4EXPJUlTN6tt1iRF9t9b2T17mhnmYQZeQi4RbhFqdsdvoQQBlTgiMwSpCsE5HJMZQImFVEKdkrOUNgCIkqkZeVlYO0adHfUDTT6PNAb7SVs3TMOO9k6nMbreDZn--LymNqTeWxr1tBvDMDWtDx9Rb9e7c3LS6a_kLg51Tt4f7t-WT8Xq9fF5uVgVtkSRC2M0mq7CumMKbctrI0RbKma4VKwqhXQl5861BpBhzRwog3XZmU5WynVSsjm52t_dxvA9upSbTRjjML1sGNRYiboSMKnrvbIxpBRd12yj73XcNQjNX1QNbw5RTfZmb5P1WWcfhn_wL84GaCE</recordid><startdate>20240528</startdate><enddate>20240528</enddate><creator>Pang, Jie</creator><creator>Li, Zhiwei</creator><creator>Dong, Shuning</creator><creator>Li, Jingtai</creator><creator>Mao, Xin</creator><creator>Ding, Hao</creator><creator>Wang, Hao</creator><creator>Guo, Xiaoming</creator><creator>Liu, Lei</creator><creator>Zhang, Jianming</creator><creator>Feng, Xinzhou</creator><creator>Liu, Bin</creator><creator>Ouyang, Xiaoping</creator><creator>Han, Ran</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0008-5250-0409</orcidid><orcidid>https://orcid.org/0000-0001-7505-5899</orcidid><orcidid>https://orcid.org/0000-0002-7716-5116</orcidid><orcidid>https://orcid.org/0000-0001-8474-2869</orcidid></search><sort><creationdate>20240528</creationdate><title>Accurate in situ rock density measurement with cosmic ray muon radiography</title><author>Pang, Jie ; Li, Zhiwei ; Dong, Shuning ; Li, Jingtai ; Mao, Xin ; Ding, Hao ; Wang, Hao ; Guo, Xiaoming ; Liu, Lei ; Zhang, Jianming ; Feng, Xinzhou ; Liu, Bin ; Ouyang, Xiaoping ; Han, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-bba1bf416f391cd56b77d293b58934278e255eedb013163e09b162fbf849ef883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cosmic rays</topic><topic>Density measurement</topic><topic>Expected values</topic><topic>Imaging techniques</topic><topic>Iron</topic><topic>Muons</topic><topic>Radiography</topic><topic>Recording</topic><topic>Spatial resolution</topic><topic>Straight line fitting</topic><topic>Underground structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Jie</creatorcontrib><creatorcontrib>Li, Zhiwei</creatorcontrib><creatorcontrib>Dong, Shuning</creatorcontrib><creatorcontrib>Li, Jingtai</creatorcontrib><creatorcontrib>Mao, Xin</creatorcontrib><creatorcontrib>Ding, Hao</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Guo, Xiaoming</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhang, Jianming</creatorcontrib><creatorcontrib>Feng, Xinzhou</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Han, Ran</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Jie</au><au>Li, Zhiwei</au><au>Dong, Shuning</au><au>Li, Jingtai</au><au>Mao, Xin</au><au>Ding, Hao</au><au>Wang, Hao</au><au>Guo, Xiaoming</au><au>Liu, Lei</au><au>Zhang, Jianming</au><au>Feng, Xinzhou</au><au>Liu, Bin</au><au>Ouyang, Xiaoping</au><au>Han, Ran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate in situ rock density measurement with cosmic ray muon radiography</atitle><jtitle>Journal of applied physics</jtitle><date>2024-05-28</date><risdate>2024</risdate><volume>135</volume><issue>20</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Muon radiography, which relies on measuring the absorption and attenuation of muons as they pass through matters, offers a new imaging technique capable of revealing the internal structure of large objects. Recent technological advancement allows for the application or testing of muon radiography in various fields, including mining, civil engineering, security check, etc. This study investigates the factors that influence muon radiography, which is used in density inversion, through simulations and experiments. The materials considered for density inversion include water, standard rock, and iron. Our simulation studies show that the number of events detected and selected has an impact on the reconstruction results, and several factors, such as multiple Coulomb scattering processes, recording time, and spatial resolution, which influence the number of muons, must be taken into account when measuring the rock density. We design and conduct a laboratory scale experiment based on the simulation results. We filter the 220 h of recording signals through time coincidence and straight-line fitting to obtain the selected events. Our results reveal that the statistical error of muons survival ratio in recording time significantly impacts the inversion result and decreases the error can improve accuracy greatly. In the experiment, the deviation between the inversion mean value and the expected value can be reduced to 2.4%–2.9% for iron, 7% for water, and 1.5% for standard rock. This density inversion approach provides insight into future density detection of underground structures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0207047</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0008-5250-0409</orcidid><orcidid>https://orcid.org/0000-0001-7505-5899</orcidid><orcidid>https://orcid.org/0000-0002-7716-5116</orcidid><orcidid>https://orcid.org/0000-0001-8474-2869</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-05, Vol.135 (20) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0207047 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Cosmic rays Density measurement Expected values Imaging techniques Iron Muons Radiography Recording Spatial resolution Straight line fitting Underground structures |
title | Accurate in situ rock density measurement with cosmic ray muon radiography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20in%20situ%20rock%20density%20measurement%20with%20cosmic%20ray%20muon%20radiography&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Pang,%20Jie&rft.date=2024-05-28&rft.volume=135&rft.issue=20&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0207047&rft_dat=%3Cproquest_scita%3E3061476470%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c217t-bba1bf416f391cd56b77d293b58934278e255eedb013163e09b162fbf849ef883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3061476470&rft_id=info:pmid/&rfr_iscdi=true |