Loading…
Automatic drowsiness detection using convolution neural network
Driver rest is one of the main sources of mishaps and passing for some individuals and the economy. As of late, specialists have started to perceive that lack of sleep is a positive, industry-driving reaction. In this article, we suggest including CNN-based savvy glasses for eye acknowledgment and r...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2850 |
creator | Jancy, S. Abhishek, Konagalla Charan, Olla Yaswanth Latha, S. Pushpa Mary, A. Viji Amutha Priyadarshini, E. Deepa, A. |
description | Driver rest is one of the main sources of mishaps and passing for some individuals and the economy. As of late, specialists have started to perceive that lack of sleep is a positive, industry-driving reaction. In this article, we suggest including CNN-based savvy glasses for eye acknowledgment and rest estimation. This new response is contrasted with the customary technique in view of the strategy for comprehension. Both execution, battery utilization, and impression are assessed for execution in incorporated glass. The outcomes show that CNN has over 7% of the precision found at the algorithmic level. Moreover, migraines in memory and battery duration are genuine and make CNN a potential answer for sleep deprivation. |
doi_str_mv | 10.1063/5.0208907 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0208907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056020954</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1687-6216f184af731803af26526d054d74c869dc7f87efcd16618ce73d4ae8b59e6a3</originalsourceid><addsrcrecordid>eNotUE9LwzAcDaLgnB78BgVvQucvTfJLepIxnAoDLwreQkxS6eyamaQOv72d2-nB4_H-EXJNYUYB2Z2YQQWqBnlCJlQIWkqkeEomADUvK87ez8lFSmuAqpZSTcj9fMhhY3JrCxfDLrW9T6lwPnub29AXw8h8Fjb0P6Eb_pneD9F0I-RdiF-X5KwxXfJXR5ySt-XD6-KpXL08Pi_mq3JLUckSK4oNVdw0klEFzDQVigodCO4ktwprZ2WjpG-so4hUWS-Z48arD1F7NGxKbg6-2xi-B5-yXoch9mOkZiBwHF0LPqpuD6pk22z2dfU2thsTfzUFvT9IC308iP0BEmhXzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3056020954</pqid></control><display><type>conference_proceeding</type><title>Automatic drowsiness detection using convolution neural network</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Jancy, S. ; Abhishek, Konagalla ; Charan, Olla Yaswanth ; Latha, S. Pushpa ; Mary, A. Viji Amutha ; Priyadarshini, E. ; Deepa, A.</creator><contributor>Vidhya, M. ; Priyadarshini, E. ; Nirmala, M. ; Kirubhashankar, C. K.</contributor><creatorcontrib>Jancy, S. ; Abhishek, Konagalla ; Charan, Olla Yaswanth ; Latha, S. Pushpa ; Mary, A. Viji Amutha ; Priyadarshini, E. ; Deepa, A. ; Vidhya, M. ; Priyadarshini, E. ; Nirmala, M. ; Kirubhashankar, C. K.</creatorcontrib><description>Driver rest is one of the main sources of mishaps and passing for some individuals and the economy. As of late, specialists have started to perceive that lack of sleep is a positive, industry-driving reaction. In this article, we suggest including CNN-based savvy glasses for eye acknowledgment and rest estimation. This new response is contrasted with the customary technique in view of the strategy for comprehension. Both execution, battery utilization, and impression are assessed for execution in incorporated glass. The outcomes show that CNN has over 7% of the precision found at the algorithmic level. Moreover, migraines in memory and battery duration are genuine and make CNN a potential answer for sleep deprivation.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0208907</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Rest ; Sleep deprivation</subject><ispartof>AIP conference proceedings, 2024, Vol.2850 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Vidhya, M.</contributor><contributor>Priyadarshini, E.</contributor><contributor>Nirmala, M.</contributor><contributor>Kirubhashankar, C. K.</contributor><creatorcontrib>Jancy, S.</creatorcontrib><creatorcontrib>Abhishek, Konagalla</creatorcontrib><creatorcontrib>Charan, Olla Yaswanth</creatorcontrib><creatorcontrib>Latha, S. Pushpa</creatorcontrib><creatorcontrib>Mary, A. Viji Amutha</creatorcontrib><creatorcontrib>Priyadarshini, E.</creatorcontrib><creatorcontrib>Deepa, A.</creatorcontrib><title>Automatic drowsiness detection using convolution neural network</title><title>AIP conference proceedings</title><description>Driver rest is one of the main sources of mishaps and passing for some individuals and the economy. As of late, specialists have started to perceive that lack of sleep is a positive, industry-driving reaction. In this article, we suggest including CNN-based savvy glasses for eye acknowledgment and rest estimation. This new response is contrasted with the customary technique in view of the strategy for comprehension. Both execution, battery utilization, and impression are assessed for execution in incorporated glass. The outcomes show that CNN has over 7% of the precision found at the algorithmic level. Moreover, migraines in memory and battery duration are genuine and make CNN a potential answer for sleep deprivation.</description><subject>Artificial neural networks</subject><subject>Rest</subject><subject>Sleep deprivation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUE9LwzAcDaLgnB78BgVvQucvTfJLepIxnAoDLwreQkxS6eyamaQOv72d2-nB4_H-EXJNYUYB2Z2YQQWqBnlCJlQIWkqkeEomADUvK87ez8lFSmuAqpZSTcj9fMhhY3JrCxfDLrW9T6lwPnub29AXw8h8Fjb0P6Eb_pneD9F0I-RdiF-X5KwxXfJXR5ySt-XD6-KpXL08Pi_mq3JLUckSK4oNVdw0klEFzDQVigodCO4ktwprZ2WjpG-so4hUWS-Z48arD1F7NGxKbg6-2xi-B5-yXoch9mOkZiBwHF0LPqpuD6pk22z2dfU2thsTfzUFvT9IC308iP0BEmhXzQ</recordid><startdate>20240517</startdate><enddate>20240517</enddate><creator>Jancy, S.</creator><creator>Abhishek, Konagalla</creator><creator>Charan, Olla Yaswanth</creator><creator>Latha, S. Pushpa</creator><creator>Mary, A. Viji Amutha</creator><creator>Priyadarshini, E.</creator><creator>Deepa, A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240517</creationdate><title>Automatic drowsiness detection using convolution neural network</title><author>Jancy, S. ; Abhishek, Konagalla ; Charan, Olla Yaswanth ; Latha, S. Pushpa ; Mary, A. Viji Amutha ; Priyadarshini, E. ; Deepa, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1687-6216f184af731803af26526d054d74c869dc7f87efcd16618ce73d4ae8b59e6a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Rest</topic><topic>Sleep deprivation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jancy, S.</creatorcontrib><creatorcontrib>Abhishek, Konagalla</creatorcontrib><creatorcontrib>Charan, Olla Yaswanth</creatorcontrib><creatorcontrib>Latha, S. Pushpa</creatorcontrib><creatorcontrib>Mary, A. Viji Amutha</creatorcontrib><creatorcontrib>Priyadarshini, E.</creatorcontrib><creatorcontrib>Deepa, A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jancy, S.</au><au>Abhishek, Konagalla</au><au>Charan, Olla Yaswanth</au><au>Latha, S. Pushpa</au><au>Mary, A. Viji Amutha</au><au>Priyadarshini, E.</au><au>Deepa, A.</au><au>Vidhya, M.</au><au>Priyadarshini, E.</au><au>Nirmala, M.</au><au>Kirubhashankar, C. K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic drowsiness detection using convolution neural network</atitle><btitle>AIP conference proceedings</btitle><date>2024-05-17</date><risdate>2024</risdate><volume>2850</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Driver rest is one of the main sources of mishaps and passing for some individuals and the economy. As of late, specialists have started to perceive that lack of sleep is a positive, industry-driving reaction. In this article, we suggest including CNN-based savvy glasses for eye acknowledgment and rest estimation. This new response is contrasted with the customary technique in view of the strategy for comprehension. Both execution, battery utilization, and impression are assessed for execution in incorporated glass. The outcomes show that CNN has over 7% of the precision found at the algorithmic level. Moreover, migraines in memory and battery duration are genuine and make CNN a potential answer for sleep deprivation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0208907</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.2850 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0208907 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Artificial neural networks Rest Sleep deprivation |
title | Automatic drowsiness detection using convolution neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20drowsiness%20detection%20using%20convolution%20neural%20network&rft.btitle=AIP%20conference%20proceedings&rft.au=Jancy,%20S.&rft.date=2024-05-17&rft.volume=2850&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0208907&rft_dat=%3Cproquest_scita%3E3056020954%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1687-6216f184af731803af26526d054d74c869dc7f87efcd16618ce73d4ae8b59e6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3056020954&rft_id=info:pmid/&rfr_iscdi=true |