Loading…

Automatic drowsiness detection using convolution neural network

Driver rest is one of the main sources of mishaps and passing for some individuals and the economy. As of late, specialists have started to perceive that lack of sleep is a positive, industry-driving reaction. In this article, we suggest including CNN-based savvy glasses for eye acknowledgment and r...

Full description

Saved in:
Bibliographic Details
Main Authors: Jancy, S., Abhishek, Konagalla, Charan, Olla Yaswanth, Latha, S. Pushpa, Mary, A. Viji Amutha, Priyadarshini, E., Deepa, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2850
creator Jancy, S.
Abhishek, Konagalla
Charan, Olla Yaswanth
Latha, S. Pushpa
Mary, A. Viji Amutha
Priyadarshini, E.
Deepa, A.
description Driver rest is one of the main sources of mishaps and passing for some individuals and the economy. As of late, specialists have started to perceive that lack of sleep is a positive, industry-driving reaction. In this article, we suggest including CNN-based savvy glasses for eye acknowledgment and rest estimation. This new response is contrasted with the customary technique in view of the strategy for comprehension. Both execution, battery utilization, and impression are assessed for execution in incorporated glass. The outcomes show that CNN has over 7% of the precision found at the algorithmic level. Moreover, migraines in memory and battery duration are genuine and make CNN a potential answer for sleep deprivation.
doi_str_mv 10.1063/5.0208907
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0208907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056020954</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1687-6216f184af731803af26526d054d74c869dc7f87efcd16618ce73d4ae8b59e6a3</originalsourceid><addsrcrecordid>eNotUE9LwzAcDaLgnB78BgVvQucvTfJLepIxnAoDLwreQkxS6eyamaQOv72d2-nB4_H-EXJNYUYB2Z2YQQWqBnlCJlQIWkqkeEomADUvK87ez8lFSmuAqpZSTcj9fMhhY3JrCxfDLrW9T6lwPnub29AXw8h8Fjb0P6Eb_pneD9F0I-RdiF-X5KwxXfJXR5ySt-XD6-KpXL08Pi_mq3JLUckSK4oNVdw0klEFzDQVigodCO4ktwprZ2WjpG-so4hUWS-Z48arD1F7NGxKbg6-2xi-B5-yXoch9mOkZiBwHF0LPqpuD6pk22z2dfU2thsTfzUFvT9IC308iP0BEmhXzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3056020954</pqid></control><display><type>conference_proceeding</type><title>Automatic drowsiness detection using convolution neural network</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Jancy, S. ; Abhishek, Konagalla ; Charan, Olla Yaswanth ; Latha, S. Pushpa ; Mary, A. Viji Amutha ; Priyadarshini, E. ; Deepa, A.</creator><contributor>Vidhya, M. ; Priyadarshini, E. ; Nirmala, M. ; Kirubhashankar, C. K.</contributor><creatorcontrib>Jancy, S. ; Abhishek, Konagalla ; Charan, Olla Yaswanth ; Latha, S. Pushpa ; Mary, A. Viji Amutha ; Priyadarshini, E. ; Deepa, A. ; Vidhya, M. ; Priyadarshini, E. ; Nirmala, M. ; Kirubhashankar, C. K.</creatorcontrib><description>Driver rest is one of the main sources of mishaps and passing for some individuals and the economy. As of late, specialists have started to perceive that lack of sleep is a positive, industry-driving reaction. In this article, we suggest including CNN-based savvy glasses for eye acknowledgment and rest estimation. This new response is contrasted with the customary technique in view of the strategy for comprehension. Both execution, battery utilization, and impression are assessed for execution in incorporated glass. The outcomes show that CNN has over 7% of the precision found at the algorithmic level. Moreover, migraines in memory and battery duration are genuine and make CNN a potential answer for sleep deprivation.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0208907</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Rest ; Sleep deprivation</subject><ispartof>AIP conference proceedings, 2024, Vol.2850 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Vidhya, M.</contributor><contributor>Priyadarshini, E.</contributor><contributor>Nirmala, M.</contributor><contributor>Kirubhashankar, C. K.</contributor><creatorcontrib>Jancy, S.</creatorcontrib><creatorcontrib>Abhishek, Konagalla</creatorcontrib><creatorcontrib>Charan, Olla Yaswanth</creatorcontrib><creatorcontrib>Latha, S. Pushpa</creatorcontrib><creatorcontrib>Mary, A. Viji Amutha</creatorcontrib><creatorcontrib>Priyadarshini, E.</creatorcontrib><creatorcontrib>Deepa, A.</creatorcontrib><title>Automatic drowsiness detection using convolution neural network</title><title>AIP conference proceedings</title><description>Driver rest is one of the main sources of mishaps and passing for some individuals and the economy. As of late, specialists have started to perceive that lack of sleep is a positive, industry-driving reaction. In this article, we suggest including CNN-based savvy glasses for eye acknowledgment and rest estimation. This new response is contrasted with the customary technique in view of the strategy for comprehension. Both execution, battery utilization, and impression are assessed for execution in incorporated glass. The outcomes show that CNN has over 7% of the precision found at the algorithmic level. Moreover, migraines in memory and battery duration are genuine and make CNN a potential answer for sleep deprivation.</description><subject>Artificial neural networks</subject><subject>Rest</subject><subject>Sleep deprivation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUE9LwzAcDaLgnB78BgVvQucvTfJLepIxnAoDLwreQkxS6eyamaQOv72d2-nB4_H-EXJNYUYB2Z2YQQWqBnlCJlQIWkqkeEomADUvK87ez8lFSmuAqpZSTcj9fMhhY3JrCxfDLrW9T6lwPnub29AXw8h8Fjb0P6Eb_pneD9F0I-RdiF-X5KwxXfJXR5ySt-XD6-KpXL08Pi_mq3JLUckSK4oNVdw0klEFzDQVigodCO4ktwprZ2WjpG-so4hUWS-Z48arD1F7NGxKbg6-2xi-B5-yXoch9mOkZiBwHF0LPqpuD6pk22z2dfU2thsTfzUFvT9IC308iP0BEmhXzQ</recordid><startdate>20240517</startdate><enddate>20240517</enddate><creator>Jancy, S.</creator><creator>Abhishek, Konagalla</creator><creator>Charan, Olla Yaswanth</creator><creator>Latha, S. Pushpa</creator><creator>Mary, A. Viji Amutha</creator><creator>Priyadarshini, E.</creator><creator>Deepa, A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240517</creationdate><title>Automatic drowsiness detection using convolution neural network</title><author>Jancy, S. ; Abhishek, Konagalla ; Charan, Olla Yaswanth ; Latha, S. Pushpa ; Mary, A. Viji Amutha ; Priyadarshini, E. ; Deepa, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1687-6216f184af731803af26526d054d74c869dc7f87efcd16618ce73d4ae8b59e6a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Rest</topic><topic>Sleep deprivation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jancy, S.</creatorcontrib><creatorcontrib>Abhishek, Konagalla</creatorcontrib><creatorcontrib>Charan, Olla Yaswanth</creatorcontrib><creatorcontrib>Latha, S. Pushpa</creatorcontrib><creatorcontrib>Mary, A. Viji Amutha</creatorcontrib><creatorcontrib>Priyadarshini, E.</creatorcontrib><creatorcontrib>Deepa, A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jancy, S.</au><au>Abhishek, Konagalla</au><au>Charan, Olla Yaswanth</au><au>Latha, S. Pushpa</au><au>Mary, A. Viji Amutha</au><au>Priyadarshini, E.</au><au>Deepa, A.</au><au>Vidhya, M.</au><au>Priyadarshini, E.</au><au>Nirmala, M.</au><au>Kirubhashankar, C. K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic drowsiness detection using convolution neural network</atitle><btitle>AIP conference proceedings</btitle><date>2024-05-17</date><risdate>2024</risdate><volume>2850</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Driver rest is one of the main sources of mishaps and passing for some individuals and the economy. As of late, specialists have started to perceive that lack of sleep is a positive, industry-driving reaction. In this article, we suggest including CNN-based savvy glasses for eye acknowledgment and rest estimation. This new response is contrasted with the customary technique in view of the strategy for comprehension. Both execution, battery utilization, and impression are assessed for execution in incorporated glass. The outcomes show that CNN has over 7% of the precision found at the algorithmic level. Moreover, migraines in memory and battery duration are genuine and make CNN a potential answer for sleep deprivation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0208907</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2850 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0208907
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Artificial neural networks
Rest
Sleep deprivation
title Automatic drowsiness detection using convolution neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20drowsiness%20detection%20using%20convolution%20neural%20network&rft.btitle=AIP%20conference%20proceedings&rft.au=Jancy,%20S.&rft.date=2024-05-17&rft.volume=2850&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0208907&rft_dat=%3Cproquest_scita%3E3056020954%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1687-6216f184af731803af26526d054d74c869dc7f87efcd16618ce73d4ae8b59e6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3056020954&rft_id=info:pmid/&rfr_iscdi=true