Loading…
First-principles prediction of thermal conductivity of bulk hexagonal boron nitride
Despite its importance, a sophisticated theoretical study of thermal conductivity in bulk h-BN has been lacking to date. In this study, we predict thermal conductivity in bulk h-BN crystals using first-principles predictions and the Boltzmann transport equation. We consider three-phonon (3ph) scatte...
Saved in:
Published in: | Applied physics letters 2024-04, Vol.124 (16) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite its importance, a sophisticated theoretical study of thermal conductivity in bulk h-BN has been lacking to date. In this study, we predict thermal conductivity in bulk h-BN crystals using first-principles predictions and the Boltzmann transport equation. We consider three-phonon (3ph) scattering, four-phonon (4ph) scattering, and phonon renormalization. Our predicted thermal conductivity is 363 and 4.88 W/(m K) for the in-plane and out-of-plane directions at room temperature, respectively. Further analysis reveals that 4ph scattering reduces thermal conductivity, while phonon renormalization weakens phonon anharmonicity and increases thermal conductivity. Eventually, the in-plane and out-of-plane thermal conductivities show intriguing
∼T−0.627 and
∼T−0.568 dependencies, respectively, far deviating from the traditional 1/T relation. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0210935 |