Loading…

Text line segmentation of offline malayalam handwritten document

Automatic handwriting recognition systems rely on text line segmentation. Text line segmentation faces a number of obstacles, such as irregular text line gaps, slanted text lines, cursive handwriting, and other similar problems. Furthermore, line segmentation is worse when dealing with noisy and unc...

Full description

Saved in:
Bibliographic Details
Main Authors: Anju, A. T., Chacko, Binu P., Basheer, K. P. Mohammad
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2965
creator Anju, A. T.
Chacko, Binu P.
Basheer, K. P. Mohammad
description Automatic handwriting recognition systems rely on text line segmentation. Text line segmentation faces a number of obstacles, such as irregular text line gaps, slanted text lines, cursive handwriting, and other similar problems. Furthermore, line segmentation is worse when dealing with noisy and uncontrolled scanned handwritten manuscripts; dealing with Malayalam handwriting, which has a complicated style and character set, makes the process slightly more challenging. For the purpose of text line segmentation in unconstrained Malayalam handwritten scanned documents, this script independent technique primarily used morphological operations and contour extraction. More than that, the Hough line transform was used to fix the skewness of the scanned document picture. There were successful trials of the approach on ten other scripts, including Bengali, Devanagari, Gujarati, Gurumukhi, Kannada, Oriya, Roman, Tamil, Telugu, and Urdu.
doi_str_mv 10.1063/5.0211999
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0211999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076803815</sourcerecordid><originalsourceid>FETCH-LOGICAL-p639-7f1d5c6dcfdf01d8f3b3c9a1727f1655b457096541ea5dbe70ee738fda52c6813</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMoWFcP_oOCN6HrTNMkzU1ZXBUWvPTgLaT50C5tWvuB7r-3axfmZWDmYV7mJeQWYY3A6QNbQ4oopTwjETKGieDIz0kEILMkzejHJbkahj1AKoXII_JYuN8xrqvg4sF9Ni6MeqzaELd-Lv8_b3StD7Oa-EsH-9NX4-hCbFszHfFrcuF1PbibU1-RYvtcbF6T3fvL2-Zpl3ScykR4tMxwa7z1gDb3tKRGahTpvOGMlRkTIDnL0GlmSyfAOUFzbzVLDc-Rrsjdcrbr2-_JDaPat1MfZkdFQfAcaI5spu4XajDV8ojq-qrR_UEhqGNAiqlTQPQPAW1X5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3076803815</pqid></control><display><type>conference_proceeding</type><title>Text line segmentation of offline malayalam handwritten document</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Anju, A. T. ; Chacko, Binu P. ; Basheer, K. P. Mohammad</creator><contributor>Sunil, J.</contributor><creatorcontrib>Anju, A. T. ; Chacko, Binu P. ; Basheer, K. P. Mohammad ; Sunil, J.</creatorcontrib><description>Automatic handwriting recognition systems rely on text line segmentation. Text line segmentation faces a number of obstacles, such as irregular text line gaps, slanted text lines, cursive handwriting, and other similar problems. Furthermore, line segmentation is worse when dealing with noisy and uncontrolled scanned handwritten manuscripts; dealing with Malayalam handwriting, which has a complicated style and character set, makes the process slightly more challenging. For the purpose of text line segmentation in unconstrained Malayalam handwritten scanned documents, this script independent technique primarily used morphological operations and contour extraction. More than that, the Hough line transform was used to fix the skewness of the scanned document picture. There were successful trials of the approach on ten other scripts, including Bengali, Devanagari, Gujarati, Gurumukhi, Kannada, Oriya, Roman, Tamil, Telugu, and Urdu.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0211999</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Documents ; Handwriting recognition ; Segmentation</subject><ispartof>AIP conference proceedings, 2024, Vol.2965 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23928,23929,25138,27922,27923</link.rule.ids></links><search><contributor>Sunil, J.</contributor><creatorcontrib>Anju, A. T.</creatorcontrib><creatorcontrib>Chacko, Binu P.</creatorcontrib><creatorcontrib>Basheer, K. P. Mohammad</creatorcontrib><title>Text line segmentation of offline malayalam handwritten document</title><title>AIP conference proceedings</title><description>Automatic handwriting recognition systems rely on text line segmentation. Text line segmentation faces a number of obstacles, such as irregular text line gaps, slanted text lines, cursive handwriting, and other similar problems. Furthermore, line segmentation is worse when dealing with noisy and uncontrolled scanned handwritten manuscripts; dealing with Malayalam handwriting, which has a complicated style and character set, makes the process slightly more challenging. For the purpose of text line segmentation in unconstrained Malayalam handwritten scanned documents, this script independent technique primarily used morphological operations and contour extraction. More than that, the Hough line transform was used to fix the skewness of the scanned document picture. There were successful trials of the approach on ten other scripts, including Bengali, Devanagari, Gujarati, Gurumukhi, Kannada, Oriya, Roman, Tamil, Telugu, and Urdu.</description><subject>Documents</subject><subject>Handwriting recognition</subject><subject>Segmentation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LxDAQhoMoWFcP_oOCN6HrTNMkzU1ZXBUWvPTgLaT50C5tWvuB7r-3axfmZWDmYV7mJeQWYY3A6QNbQ4oopTwjETKGieDIz0kEILMkzejHJbkahj1AKoXII_JYuN8xrqvg4sF9Ni6MeqzaELd-Lv8_b3StD7Oa-EsH-9NX4-hCbFszHfFrcuF1PbibU1-RYvtcbF6T3fvL2-Zpl3ScykR4tMxwa7z1gDb3tKRGahTpvOGMlRkTIDnL0GlmSyfAOUFzbzVLDc-Rrsjdcrbr2-_JDaPat1MfZkdFQfAcaI5spu4XajDV8ojq-qrR_UEhqGNAiqlTQPQPAW1X5A</recordid><startdate>20240708</startdate><enddate>20240708</enddate><creator>Anju, A. T.</creator><creator>Chacko, Binu P.</creator><creator>Basheer, K. P. Mohammad</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240708</creationdate><title>Text line segmentation of offline malayalam handwritten document</title><author>Anju, A. T. ; Chacko, Binu P. ; Basheer, K. P. Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p639-7f1d5c6dcfdf01d8f3b3c9a1727f1655b457096541ea5dbe70ee738fda52c6813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Documents</topic><topic>Handwriting recognition</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anju, A. T.</creatorcontrib><creatorcontrib>Chacko, Binu P.</creatorcontrib><creatorcontrib>Basheer, K. P. Mohammad</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anju, A. T.</au><au>Chacko, Binu P.</au><au>Basheer, K. P. Mohammad</au><au>Sunil, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Text line segmentation of offline malayalam handwritten document</atitle><btitle>AIP conference proceedings</btitle><date>2024-07-08</date><risdate>2024</risdate><volume>2965</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Automatic handwriting recognition systems rely on text line segmentation. Text line segmentation faces a number of obstacles, such as irregular text line gaps, slanted text lines, cursive handwriting, and other similar problems. Furthermore, line segmentation is worse when dealing with noisy and uncontrolled scanned handwritten manuscripts; dealing with Malayalam handwriting, which has a complicated style and character set, makes the process slightly more challenging. For the purpose of text line segmentation in unconstrained Malayalam handwritten scanned documents, this script independent technique primarily used morphological operations and contour extraction. More than that, the Hough line transform was used to fix the skewness of the scanned document picture. There were successful trials of the approach on ten other scripts, including Bengali, Devanagari, Gujarati, Gurumukhi, Kannada, Oriya, Roman, Tamil, Telugu, and Urdu.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0211999</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2965 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0211999
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Documents
Handwriting recognition
Segmentation
title Text line segmentation of offline malayalam handwritten document
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Text%20line%20segmentation%20of%20offline%20malayalam%20handwritten%20document&rft.btitle=AIP%20conference%20proceedings&rft.au=Anju,%20A.%20T.&rft.date=2024-07-08&rft.volume=2965&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0211999&rft_dat=%3Cproquest_scita%3E3076803815%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p639-7f1d5c6dcfdf01d8f3b3c9a1727f1655b457096541ea5dbe70ee738fda52c6813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076803815&rft_id=info:pmid/&rfr_iscdi=true