Loading…
Text line segmentation of offline malayalam handwritten document
Automatic handwriting recognition systems rely on text line segmentation. Text line segmentation faces a number of obstacles, such as irregular text line gaps, slanted text lines, cursive handwriting, and other similar problems. Furthermore, line segmentation is worse when dealing with noisy and unc...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2965 |
creator | Anju, A. T. Chacko, Binu P. Basheer, K. P. Mohammad |
description | Automatic handwriting recognition systems rely on text line segmentation. Text line segmentation faces a number of obstacles, such as irregular text line gaps, slanted text lines, cursive handwriting, and other similar problems. Furthermore, line segmentation is worse when dealing with noisy and uncontrolled scanned handwritten manuscripts; dealing with Malayalam handwriting, which has a complicated style and character set, makes the process slightly more challenging. For the purpose of text line segmentation in unconstrained Malayalam handwritten scanned documents, this script independent technique primarily used morphological operations and contour extraction. More than that, the Hough line transform was used to fix the skewness of the scanned document picture. There were successful trials of the approach on ten other scripts, including Bengali, Devanagari, Gujarati, Gurumukhi, Kannada, Oriya, Roman, Tamil, Telugu, and Urdu. |
doi_str_mv | 10.1063/5.0211999 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0211999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076803815</sourcerecordid><originalsourceid>FETCH-LOGICAL-p639-7f1d5c6dcfdf01d8f3b3c9a1727f1655b457096541ea5dbe70ee738fda52c6813</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMoWFcP_oOCN6HrTNMkzU1ZXBUWvPTgLaT50C5tWvuB7r-3axfmZWDmYV7mJeQWYY3A6QNbQ4oopTwjETKGieDIz0kEILMkzejHJbkahj1AKoXII_JYuN8xrqvg4sF9Ni6MeqzaELd-Lv8_b3StD7Oa-EsH-9NX4-hCbFszHfFrcuF1PbibU1-RYvtcbF6T3fvL2-Zpl3ScykR4tMxwa7z1gDb3tKRGahTpvOGMlRkTIDnL0GlmSyfAOUFzbzVLDc-Rrsjdcrbr2-_JDaPat1MfZkdFQfAcaI5spu4XajDV8ojq-qrR_UEhqGNAiqlTQPQPAW1X5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3076803815</pqid></control><display><type>conference_proceeding</type><title>Text line segmentation of offline malayalam handwritten document</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Anju, A. T. ; Chacko, Binu P. ; Basheer, K. P. Mohammad</creator><contributor>Sunil, J.</contributor><creatorcontrib>Anju, A. T. ; Chacko, Binu P. ; Basheer, K. P. Mohammad ; Sunil, J.</creatorcontrib><description>Automatic handwriting recognition systems rely on text line segmentation. Text line segmentation faces a number of obstacles, such as irregular text line gaps, slanted text lines, cursive handwriting, and other similar problems. Furthermore, line segmentation is worse when dealing with noisy and uncontrolled scanned handwritten manuscripts; dealing with Malayalam handwriting, which has a complicated style and character set, makes the process slightly more challenging. For the purpose of text line segmentation in unconstrained Malayalam handwritten scanned documents, this script independent technique primarily used morphological operations and contour extraction. More than that, the Hough line transform was used to fix the skewness of the scanned document picture. There were successful trials of the approach on ten other scripts, including Bengali, Devanagari, Gujarati, Gurumukhi, Kannada, Oriya, Roman, Tamil, Telugu, and Urdu.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0211999</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Documents ; Handwriting recognition ; Segmentation</subject><ispartof>AIP conference proceedings, 2024, Vol.2965 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23928,23929,25138,27922,27923</link.rule.ids></links><search><contributor>Sunil, J.</contributor><creatorcontrib>Anju, A. T.</creatorcontrib><creatorcontrib>Chacko, Binu P.</creatorcontrib><creatorcontrib>Basheer, K. P. Mohammad</creatorcontrib><title>Text line segmentation of offline malayalam handwritten document</title><title>AIP conference proceedings</title><description>Automatic handwriting recognition systems rely on text line segmentation. Text line segmentation faces a number of obstacles, such as irregular text line gaps, slanted text lines, cursive handwriting, and other similar problems. Furthermore, line segmentation is worse when dealing with noisy and uncontrolled scanned handwritten manuscripts; dealing with Malayalam handwriting, which has a complicated style and character set, makes the process slightly more challenging. For the purpose of text line segmentation in unconstrained Malayalam handwritten scanned documents, this script independent technique primarily used morphological operations and contour extraction. More than that, the Hough line transform was used to fix the skewness of the scanned document picture. There were successful trials of the approach on ten other scripts, including Bengali, Devanagari, Gujarati, Gurumukhi, Kannada, Oriya, Roman, Tamil, Telugu, and Urdu.</description><subject>Documents</subject><subject>Handwriting recognition</subject><subject>Segmentation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LxDAQhoMoWFcP_oOCN6HrTNMkzU1ZXBUWvPTgLaT50C5tWvuB7r-3axfmZWDmYV7mJeQWYY3A6QNbQ4oopTwjETKGieDIz0kEILMkzejHJbkahj1AKoXII_JYuN8xrqvg4sF9Ni6MeqzaELd-Lv8_b3StD7Oa-EsH-9NX4-hCbFszHfFrcuF1PbibU1-RYvtcbF6T3fvL2-Zpl3ScykR4tMxwa7z1gDb3tKRGahTpvOGMlRkTIDnL0GlmSyfAOUFzbzVLDc-Rrsjdcrbr2-_JDaPat1MfZkdFQfAcaI5spu4XajDV8ojq-qrR_UEhqGNAiqlTQPQPAW1X5A</recordid><startdate>20240708</startdate><enddate>20240708</enddate><creator>Anju, A. T.</creator><creator>Chacko, Binu P.</creator><creator>Basheer, K. P. Mohammad</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240708</creationdate><title>Text line segmentation of offline malayalam handwritten document</title><author>Anju, A. T. ; Chacko, Binu P. ; Basheer, K. P. Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p639-7f1d5c6dcfdf01d8f3b3c9a1727f1655b457096541ea5dbe70ee738fda52c6813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Documents</topic><topic>Handwriting recognition</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anju, A. T.</creatorcontrib><creatorcontrib>Chacko, Binu P.</creatorcontrib><creatorcontrib>Basheer, K. P. Mohammad</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anju, A. T.</au><au>Chacko, Binu P.</au><au>Basheer, K. P. Mohammad</au><au>Sunil, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Text line segmentation of offline malayalam handwritten document</atitle><btitle>AIP conference proceedings</btitle><date>2024-07-08</date><risdate>2024</risdate><volume>2965</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Automatic handwriting recognition systems rely on text line segmentation. Text line segmentation faces a number of obstacles, such as irregular text line gaps, slanted text lines, cursive handwriting, and other similar problems. Furthermore, line segmentation is worse when dealing with noisy and uncontrolled scanned handwritten manuscripts; dealing with Malayalam handwriting, which has a complicated style and character set, makes the process slightly more challenging. For the purpose of text line segmentation in unconstrained Malayalam handwritten scanned documents, this script independent technique primarily used morphological operations and contour extraction. More than that, the Hough line transform was used to fix the skewness of the scanned document picture. There were successful trials of the approach on ten other scripts, including Bengali, Devanagari, Gujarati, Gurumukhi, Kannada, Oriya, Roman, Tamil, Telugu, and Urdu.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0211999</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.2965 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0211999 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Documents Handwriting recognition Segmentation |
title | Text line segmentation of offline malayalam handwritten document |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Text%20line%20segmentation%20of%20offline%20malayalam%20handwritten%20document&rft.btitle=AIP%20conference%20proceedings&rft.au=Anju,%20A.%20T.&rft.date=2024-07-08&rft.volume=2965&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0211999&rft_dat=%3Cproquest_scita%3E3076803815%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p639-7f1d5c6dcfdf01d8f3b3c9a1727f1655b457096541ea5dbe70ee738fda52c6813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076803815&rft_id=info:pmid/&rfr_iscdi=true |