Loading…
Continuous Floquet theory in solid-state NMR
This article presents the application of continuous Floquet theory in solid-state nuclear magnetic resonance (NMR). Continuous Floquet theory extends the traditional Floquet theory to non-continuous Hamiltonians, enabling the description of observable effects not fully captured by the traditional Fl...
Saved in:
Published in: | The Journal of chemical physics 2024-06, Vol.160 (24) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c273t-61ddc887171469f79004d44308f49e85290e53d4bb879eaca3fde4050784e5603 |
container_end_page | |
container_issue | 24 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 160 |
creator | Chávez, Matías Ernst, Matthias |
description | This article presents the application of continuous Floquet theory in solid-state nuclear magnetic resonance (NMR). Continuous Floquet theory extends the traditional Floquet theory to non-continuous Hamiltonians, enabling the description of observable effects not fully captured by the traditional Floquet theory due to its requirement for a periodic Hamiltonian. We present closed-form expressions for computing first- and second-order effective Hamiltonians, streamlining integration with the traditional Floquet theory and facilitating application in NMR experiments featuring multiple modulation frequencies. Subsequently, we show examples of the practical application of continuous Floquet theory by investigating several solid-state NMR experiments. These examples illustrate the importance of the duration of the pulse scheme regarding the width of the resonance conditions and the near-resonance behavior. |
doi_str_mv | 10.1063/5.0213078 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0213078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073332455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-61ddc887171469f79004d44308f49e85290e53d4bb879eaca3fde4050784e5603</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTg19ACl5U7HzT_D_KcCpMBdFz6ZoUM7pmJulh397MTQ8ePAXCj4fnfRA6xTDGwMkNG0OBCQi5h4YYpMoFV7CPhpC-c8WBD9BRCAsAwKKgh2hApKLAiBqi64nrou1614ds2rrP3sQsfhjn15ntsuBaq_MQq2iy56fXY3TQVG0wJ7t3hN6nd2-Th3z2cv84uZ3ldSFIzDnWupZSYIEpV41QAFRTSkA2VBnJCgWGEU3ncymUqeqKNNqkPukAahgHMkIX29yV3zQKsVzaUJu2rTqTipbpVFIQSjFN9PwPXbjed6ndtyKkoIwldblVtXcheNOUK2-XlV-XGMrNhCUrdxMme7ZL7OdLo3_lz2YJXG1BqG1axrrun7Qvv2Z0yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073332455</pqid></control><display><type>article</type><title>Continuous Floquet theory in solid-state NMR</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Chávez, Matías ; Ernst, Matthias</creator><creatorcontrib>Chávez, Matías ; Ernst, Matthias</creatorcontrib><description>This article presents the application of continuous Floquet theory in solid-state nuclear magnetic resonance (NMR). Continuous Floquet theory extends the traditional Floquet theory to non-continuous Hamiltonians, enabling the description of observable effects not fully captured by the traditional Floquet theory due to its requirement for a periodic Hamiltonian. We present closed-form expressions for computing first- and second-order effective Hamiltonians, streamlining integration with the traditional Floquet theory and facilitating application in NMR experiments featuring multiple modulation frequencies. Subsequently, we show examples of the practical application of continuous Floquet theory by investigating several solid-state NMR experiments. These examples illustrate the importance of the duration of the pulse scheme regarding the width of the resonance conditions and the near-resonance behavior.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0213078</identifier><identifier>PMID: 38940539</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>NMR ; Nuclear magnetic resonance ; Solid state</subject><ispartof>The Journal of chemical physics, 2024-06, Vol.160 (24)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-61ddc887171469f79004d44308f49e85290e53d4bb879eaca3fde4050784e5603</cites><orcidid>0000-0002-9538-6086 ; 0000-0003-1395-9387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0213078$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38940539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chávez, Matías</creatorcontrib><creatorcontrib>Ernst, Matthias</creatorcontrib><title>Continuous Floquet theory in solid-state NMR</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>This article presents the application of continuous Floquet theory in solid-state nuclear magnetic resonance (NMR). Continuous Floquet theory extends the traditional Floquet theory to non-continuous Hamiltonians, enabling the description of observable effects not fully captured by the traditional Floquet theory due to its requirement for a periodic Hamiltonian. We present closed-form expressions for computing first- and second-order effective Hamiltonians, streamlining integration with the traditional Floquet theory and facilitating application in NMR experiments featuring multiple modulation frequencies. Subsequently, we show examples of the practical application of continuous Floquet theory by investigating several solid-state NMR experiments. These examples illustrate the importance of the duration of the pulse scheme regarding the width of the resonance conditions and the near-resonance behavior.</description><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Solid state</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90E9LwzAYBvAgipvTg19ACl5U7HzT_D_KcCpMBdFz6ZoUM7pmJulh397MTQ8ePAXCj4fnfRA6xTDGwMkNG0OBCQi5h4YYpMoFV7CPhpC-c8WBD9BRCAsAwKKgh2hApKLAiBqi64nrou1614ds2rrP3sQsfhjn15ntsuBaq_MQq2iy56fXY3TQVG0wJ7t3hN6nd2-Th3z2cv84uZ3ldSFIzDnWupZSYIEpV41QAFRTSkA2VBnJCgWGEU3ncymUqeqKNNqkPukAahgHMkIX29yV3zQKsVzaUJu2rTqTipbpVFIQSjFN9PwPXbjed6ndtyKkoIwldblVtXcheNOUK2-XlV-XGMrNhCUrdxMme7ZL7OdLo3_lz2YJXG1BqG1axrrun7Qvv2Z0yg</recordid><startdate>20240628</startdate><enddate>20240628</enddate><creator>Chávez, Matías</creator><creator>Ernst, Matthias</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9538-6086</orcidid><orcidid>https://orcid.org/0000-0003-1395-9387</orcidid></search><sort><creationdate>20240628</creationdate><title>Continuous Floquet theory in solid-state NMR</title><author>Chávez, Matías ; Ernst, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-61ddc887171469f79004d44308f49e85290e53d4bb879eaca3fde4050784e5603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Solid state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chávez, Matías</creatorcontrib><creatorcontrib>Ernst, Matthias</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chávez, Matías</au><au>Ernst, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Floquet theory in solid-state NMR</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-06-28</date><risdate>2024</risdate><volume>160</volume><issue>24</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>This article presents the application of continuous Floquet theory in solid-state nuclear magnetic resonance (NMR). Continuous Floquet theory extends the traditional Floquet theory to non-continuous Hamiltonians, enabling the description of observable effects not fully captured by the traditional Floquet theory due to its requirement for a periodic Hamiltonian. We present closed-form expressions for computing first- and second-order effective Hamiltonians, streamlining integration with the traditional Floquet theory and facilitating application in NMR experiments featuring multiple modulation frequencies. Subsequently, we show examples of the practical application of continuous Floquet theory by investigating several solid-state NMR experiments. These examples illustrate the importance of the duration of the pulse scheme regarding the width of the resonance conditions and the near-resonance behavior.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38940539</pmid><doi>10.1063/5.0213078</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9538-6086</orcidid><orcidid>https://orcid.org/0000-0003-1395-9387</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-06, Vol.160 (24) |
issn | 0021-9606 1089-7690 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0213078 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | NMR Nuclear magnetic resonance Solid state |
title | Continuous Floquet theory in solid-state NMR |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Floquet%20theory%20in%20solid-state%20NMR&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ch%C3%A1vez,%20Mat%C3%ADas&rft.date=2024-06-28&rft.volume=160&rft.issue=24&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0213078&rft_dat=%3Cproquest_scita%3E3073332455%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-61ddc887171469f79004d44308f49e85290e53d4bb879eaca3fde4050784e5603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3073332455&rft_id=info:pmid/38940539&rfr_iscdi=true |