Loading…
Quantitative time-resolved diagnostics of electric field dynamics during individual plasma breakdown events using burst laser pulse electric field induced second harmonic generation
In plasma discharges, the acceleration of electrons by a fast varying electric field and the subsequent collisional electron energy transfer determines the plasma dynamics, chemical reactivity, and breakdown. Current in situ electric field measurements require reconstruction of the temporal profile...
Saved in:
Published in: | Applied physics letters 2024-07, Vol.125 (5) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In plasma discharges, the acceleration of electrons by a fast varying electric field and the subsequent collisional electron energy transfer determines the plasma dynamics, chemical reactivity, and breakdown. Current in situ electric field measurements require reconstruction of the temporal profile over many observations. However, such methods are unsuitable for non-repetitive and unstable plasmas. Here, we present a method for creating “movies” of dynamic electric fields in a single acquisition at sample rates of 500 × 106 fps. This ultrafast diagnostic was demonstrated in radio frequency electric fields between two parallel plates in air, as well as in Ar nanosecond-pulsed single-sided dielectric barrier discharges. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0215586 |