Loading…
Enhanced comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics under a moderate electric field
Bismuth sodium titanate (Bi0.5Na0.5TiO3)-based relaxor ferroelectric ceramics have received ever-increasing interest for their potential application in dielectric capacitors owing to their sterling energy storage capability. Herein, the perovskite end-member Ba(Fe0.5Nb0.5)O3 (BFN) was incorporated i...
Saved in:
Published in: | Applied physics letters 2024-06, Vol.124 (25) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bismuth sodium titanate (Bi0.5Na0.5TiO3)-based relaxor ferroelectric ceramics have received ever-increasing interest for their potential application in dielectric capacitors owing to their sterling energy storage capability. Herein, the perovskite end-member Ba(Fe0.5Nb0.5)O3 (BFN) was incorporated into 0.7Bi0.5Na0.5TiO3-0.3SrTiO3 (0.7BNT-0.3ST) ceramics to improve the relaxor characteristics and refine the grain, leading to slim polarization–electric field (P–E) hysteresis loops and enhanced electric breakdown strength. Particularly, the 0.85(0.7BNT-0.3ST)-0.15BFN ceramics achieved a high recoverable energy density of 5.7 J/cm3 and a high energy storage efficiency of 86.4% under a moderate electric field of 390 kV/cm. Additionally, remarkable stability in frequency, cycling, and temperature and excellent charge/discharge behavior were achieved at the same time. The above findings reveal that BFN-modified BNT-ST ceramics display greatly improved comprehensive energy storage properties, making them promising candidates in the field of electrostatic energy storage. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0217327 |