Loading…
Academic support agent using SVM and logistic regression
The main resource of different universities is their students. Universities and students both contribute significantly to the production of highly qualified graduates through their achievements in the classroom. Academic performance refers to a student’s attainment of their educational objective and...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3075 |
creator | Ashokkumar, K. Diviyash, R. Dineshwaran, B. Reddy, Venna Sai Teja |
description | The main resource of different universities is their students. Universities and students both contribute significantly to the production of highly qualified graduates through their achievements in the classroom. Academic performance refers to a student’s attainment of their educational objective and can be evaluated and tested through exams, assessments, and other measurement tools. However, because pupils may have varying levels of performance achievement, academic performance attainment varies. In this project, we create a student database using machine learning models and analyse their performances. We use the datasets of other groups and perform data visualization for the whole dataset. The input is the students’ dataset, and the output is the graphs and accuracy level analysing the academic performances. |
doi_str_mv | 10.1063/5.0217592 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0217592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085724288</sourcerecordid><originalsourceid>FETCH-LOGICAL-p632-a778dc551f57db99daf4196abe3d2d64b0ed010b2b48860a8baa8b1a908543393</originalsourceid><addsrcrecordid>eNotkM9LwzAcxYMoWKcH_4OCN6Hzm59NjmPoFCYeHOItJE1aMra2Ju3B_97Idni8y4f3Hg-hewxLDII-8SUQXHNFLlCBOcdVLbC4RAWAYhVh9Psa3aS0ByCqrmWB5Koxzh9DU6Z5HIc4labz_VTOKfRd-fn1XprelYehC2nKUPRd9CmFob9FV605JH939gXavTzv1q_V9mPztl5tq1FQUplc4pq8o-W1s0o50zKshLGeOuIEs-AdYLDEMikFGGlNFjYKJGeUKrpAD6fYMQ4_s0-T3g9z7HOjppmpCSNSZurxRKUmTGbK8_QYw9HEX41B_x-juT4fQ_8AFnFT6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3085724288</pqid></control><display><type>conference_proceeding</type><title>Academic support agent using SVM and logistic regression</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Ashokkumar, K. ; Diviyash, R. ; Dineshwaran, B. ; Reddy, Venna Sai Teja</creator><contributor>Godfrey Winster, S ; Pushpalatha, M ; Baskar, M ; Kishore Anthuvan Sahayaraj, K</contributor><creatorcontrib>Ashokkumar, K. ; Diviyash, R. ; Dineshwaran, B. ; Reddy, Venna Sai Teja ; Godfrey Winster, S ; Pushpalatha, M ; Baskar, M ; Kishore Anthuvan Sahayaraj, K</creatorcontrib><description>The main resource of different universities is their students. Universities and students both contribute significantly to the production of highly qualified graduates through their achievements in the classroom. Academic performance refers to a student’s attainment of their educational objective and can be evaluated and tested through exams, assessments, and other measurement tools. However, because pupils may have varying levels of performance achievement, academic performance attainment varies. In this project, we create a student database using machine learning models and analyse their performances. We use the datasets of other groups and perform data visualization for the whole dataset. The input is the students’ dataset, and the output is the graphs and accuracy level analysing the academic performances.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0217592</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Colleges & universities ; Datasets ; Machine learning ; Performance evaluation ; Scientific visualization ; Students</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3075 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Godfrey Winster, S</contributor><contributor>Pushpalatha, M</contributor><contributor>Baskar, M</contributor><contributor>Kishore Anthuvan Sahayaraj, K</contributor><creatorcontrib>Ashokkumar, K.</creatorcontrib><creatorcontrib>Diviyash, R.</creatorcontrib><creatorcontrib>Dineshwaran, B.</creatorcontrib><creatorcontrib>Reddy, Venna Sai Teja</creatorcontrib><title>Academic support agent using SVM and logistic regression</title><title>AIP Conference Proceedings</title><description>The main resource of different universities is their students. Universities and students both contribute significantly to the production of highly qualified graduates through their achievements in the classroom. Academic performance refers to a student’s attainment of their educational objective and can be evaluated and tested through exams, assessments, and other measurement tools. However, because pupils may have varying levels of performance achievement, academic performance attainment varies. In this project, we create a student database using machine learning models and analyse their performances. We use the datasets of other groups and perform data visualization for the whole dataset. The input is the students’ dataset, and the output is the graphs and accuracy level analysing the academic performances.</description><subject>Colleges & universities</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Scientific visualization</subject><subject>Students</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM9LwzAcxYMoWKcH_4OCN6Hzm59NjmPoFCYeHOItJE1aMra2Ju3B_97Idni8y4f3Hg-hewxLDII-8SUQXHNFLlCBOcdVLbC4RAWAYhVh9Psa3aS0ByCqrmWB5Koxzh9DU6Z5HIc4labz_VTOKfRd-fn1XprelYehC2nKUPRd9CmFob9FV605JH939gXavTzv1q_V9mPztl5tq1FQUplc4pq8o-W1s0o50zKshLGeOuIEs-AdYLDEMikFGGlNFjYKJGeUKrpAD6fYMQ4_s0-T3g9z7HOjppmpCSNSZurxRKUmTGbK8_QYw9HEX41B_x-juT4fQ_8AFnFT6Q</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Ashokkumar, K.</creator><creator>Diviyash, R.</creator><creator>Dineshwaran, B.</creator><creator>Reddy, Venna Sai Teja</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240729</creationdate><title>Academic support agent using SVM and logistic regression</title><author>Ashokkumar, K. ; Diviyash, R. ; Dineshwaran, B. ; Reddy, Venna Sai Teja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p632-a778dc551f57db99daf4196abe3d2d64b0ed010b2b48860a8baa8b1a908543393</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Colleges & universities</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Scientific visualization</topic><topic>Students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashokkumar, K.</creatorcontrib><creatorcontrib>Diviyash, R.</creatorcontrib><creatorcontrib>Dineshwaran, B.</creatorcontrib><creatorcontrib>Reddy, Venna Sai Teja</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashokkumar, K.</au><au>Diviyash, R.</au><au>Dineshwaran, B.</au><au>Reddy, Venna Sai Teja</au><au>Godfrey Winster, S</au><au>Pushpalatha, M</au><au>Baskar, M</au><au>Kishore Anthuvan Sahayaraj, K</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Academic support agent using SVM and logistic regression</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-07-29</date><risdate>2024</risdate><volume>3075</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The main resource of different universities is their students. Universities and students both contribute significantly to the production of highly qualified graduates through their achievements in the classroom. Academic performance refers to a student’s attainment of their educational objective and can be evaluated and tested through exams, assessments, and other measurement tools. However, because pupils may have varying levels of performance achievement, academic performance attainment varies. In this project, we create a student database using machine learning models and analyse their performances. We use the datasets of other groups and perform data visualization for the whole dataset. The input is the students’ dataset, and the output is the graphs and accuracy level analysing the academic performances.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0217592</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2024, Vol.3075 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0217592 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Colleges & universities Datasets Machine learning Performance evaluation Scientific visualization Students |
title | Academic support agent using SVM and logistic regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Academic%20support%20agent%20using%20SVM%20and%20logistic%20regression&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Ashokkumar,%20K.&rft.date=2024-07-29&rft.volume=3075&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0217592&rft_dat=%3Cproquest_scita%3E3085724288%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p632-a778dc551f57db99daf4196abe3d2d64b0ed010b2b48860a8baa8b1a908543393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085724288&rft_id=info:pmid/&rfr_iscdi=true |