Loading…
Solar cell parameter extraction: A synergistic fusion of mathematical modeling and optimization algorithms
Ensuring precise representation of solar cells is pivotal for optimizing solar photovoltaic (PV) system performance. Presently, existing solar cell models lack accuracy due to unattainable parameter data, rendering manufacturer datasheets insufficient for reliable PV cell modeling. Hence, the accura...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ensuring precise representation of solar cells is pivotal for optimizing solar photovoltaic (PV) system performance. Presently, existing solar cell models lack accuracy due to unattainable parameter data, rendering manufacturer datasheets insufficient for reliable PV cell modeling. Hence, the accurate estimation of requisite parameters becomes imperative for attaining precise solar cell models. To address this, this study introduces a straightforward multi-objective optimization algorithm to derive cell parameters. The approach acknowledges that prevailing algorithms often yield suboptimal outcomes due to local minima and untimely convergence. The primary aim is to establish the proposed algorithm’s reliability. Numerous optimization methods have emerged to tackle this concern; however, their efficacy frequently falls short, resulting in undependable outcomes. Consequently, the suggested algorithm is benchmarked against established optimization techniques to showcase its competence. Empirical findings, coupled with statistical scrutiny, corroborate the algorithm’s performance relative to parameter estimation. Furthermore, outcomes underscore the suitability of the proposed method for precise solar PV modeling. The algorithm’s uncomplicated structure and heightened accuracy underscore its versatility for diverse applications within the solar energy domain. Additionally, its computational efficiency and ease of implementation enhance its value as a valuable asset in solar energy research. In conclusion, the proposed algorithm furnishes a meticulous and dependable avenue for parameter estimation indispensable in solar cell modeling, thereby enhancing overall solar PV system efficacy. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0227881 |