Loading…
Particle response to oscillatory flows at finite Reynolds numbers
The response of spherical particles to oscillatory fluid flow forcing at finite Reynolds numbers exhibits significant deviations from classical analytical predictions due to nonlinear convective contributions. This study employs finite element simulations to explore the long-term (stationary) behavi...
Saved in:
Published in: | Physics of fluids (1994) 2024-10, Vol.36 (10) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c182t-d1f324ee8e6c45387b2ab4775e3e16474e7de139a6c5ab81f957911dc7de43e73 |
container_end_page | |
container_issue | 10 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Tarver, Benjamin Coimbra, Carlos F. M. |
description | The response of spherical particles to oscillatory fluid flow forcing at finite Reynolds numbers exhibits significant deviations from classical analytical predictions due to nonlinear convective contributions. This study employs finite element simulations to explore the long-term (stationary) behavior of such particles across a wide range of conditions, including various external and particle Reynolds numbers, Strouhal numbers, and fluid-to-particle density ratios. Key contributions of this work include determining the range of validity of Tchen's equation of motion for infinitesimal and finite Reynolds numbers and correlating particle response for a wide range of density ratios and flow conditions at high frequency oscillations. This work introduces a modified form of the history drag term in a newly proposed Lagrangian equation of motion. The new equation incorporates a parameter-dependent fractional-order derivative tailored to accommodate nonlinearities due to convective effects. These novel correlations not only extend the operational range of existing model equations but also provide accurate estimates of particle response under a range of external flow conditions, as validated by comparison with numerical solutions of the Navier–Stokes flow around the particles. |
doi_str_mv | 10.1063/5.0229970 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0229970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123905945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-d1f324ee8e6c45387b2ab4775e3e16474e7de139a6c5ab81f957911dc7de43e73</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsHv0HAk8LWvGSTbI6l-A8Kiug5ZLNvYct2U5Ms0m_vlvbs6Q2PHzPMEHILbAFMiUe5YJwbo9kZmQGrTKGVUucHrVmhlIBLcpXShjEmDFczsvxwMXe-Rxox7cKQkOZAQ_Jd37sc4p62ffhN1GXadkOXkX7ifgh9k-gwbmuM6ZpctK5PeHO6c_L9_PS1ei3W7y9vq-W68FDxXDTQCl4iVqh8KUWla-7qUmuJAkGVukTdIAjjlJeurqA1UhuAxk_vUqAWc3J39N3F8DNiynYTxjhMkVYAF4ZJM_nOyf2R8jGkFLG1u9htXdxbYPawkJX2tNDEPhzZqW12uQvDP_AfzOtlNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123905945</pqid></control><display><type>article</type><title>Particle response to oscillatory flows at finite Reynolds numbers</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Tarver, Benjamin ; Coimbra, Carlos F. M.</creator><creatorcontrib>Tarver, Benjamin ; Coimbra, Carlos F. M.</creatorcontrib><description>The response of spherical particles to oscillatory fluid flow forcing at finite Reynolds numbers exhibits significant deviations from classical analytical predictions due to nonlinear convective contributions. This study employs finite element simulations to explore the long-term (stationary) behavior of such particles across a wide range of conditions, including various external and particle Reynolds numbers, Strouhal numbers, and fluid-to-particle density ratios. Key contributions of this work include determining the range of validity of Tchen's equation of motion for infinitesimal and finite Reynolds numbers and correlating particle response for a wide range of density ratios and flow conditions at high frequency oscillations. This work introduces a modified form of the history drag term in a newly proposed Lagrangian equation of motion. The new equation incorporates a parameter-dependent fractional-order derivative tailored to accommodate nonlinearities due to convective effects. These novel correlations not only extend the operational range of existing model equations but also provide accurate estimates of particle response under a range of external flow conditions, as validated by comparison with numerical solutions of the Navier–Stokes flow around the particles.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0229970</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Equations of motion ; Euler-Lagrange equation ; Fluid dynamics ; Fluid flow ; Fractional calculus ; Nonlinear response ; Nonlinearity ; Oscillating flow ; Parameter modification ; Particle density (concentration) ; Reynolds number ; Stokes flow</subject><ispartof>Physics of fluids (1994), 2024-10, Vol.36 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-d1f324ee8e6c45387b2ab4775e3e16474e7de139a6c5ab81f957911dc7de43e73</cites><orcidid>0009-0006-0444-9392 ; 0000-0002-9428-3931 ; 0000-0003-1376-0423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Tarver, Benjamin</creatorcontrib><creatorcontrib>Coimbra, Carlos F. M.</creatorcontrib><title>Particle response to oscillatory flows at finite Reynolds numbers</title><title>Physics of fluids (1994)</title><description>The response of spherical particles to oscillatory fluid flow forcing at finite Reynolds numbers exhibits significant deviations from classical analytical predictions due to nonlinear convective contributions. This study employs finite element simulations to explore the long-term (stationary) behavior of such particles across a wide range of conditions, including various external and particle Reynolds numbers, Strouhal numbers, and fluid-to-particle density ratios. Key contributions of this work include determining the range of validity of Tchen's equation of motion for infinitesimal and finite Reynolds numbers and correlating particle response for a wide range of density ratios and flow conditions at high frequency oscillations. This work introduces a modified form of the history drag term in a newly proposed Lagrangian equation of motion. The new equation incorporates a parameter-dependent fractional-order derivative tailored to accommodate nonlinearities due to convective effects. These novel correlations not only extend the operational range of existing model equations but also provide accurate estimates of particle response under a range of external flow conditions, as validated by comparison with numerical solutions of the Navier–Stokes flow around the particles.</description><subject>Equations of motion</subject><subject>Euler-Lagrange equation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fractional calculus</subject><subject>Nonlinear response</subject><subject>Nonlinearity</subject><subject>Oscillating flow</subject><subject>Parameter modification</subject><subject>Particle density (concentration)</subject><subject>Reynolds number</subject><subject>Stokes flow</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kE9LAzEUxIMoWKsHv0HAk8LWvGSTbI6l-A8Kiug5ZLNvYct2U5Ms0m_vlvbs6Q2PHzPMEHILbAFMiUe5YJwbo9kZmQGrTKGVUucHrVmhlIBLcpXShjEmDFczsvxwMXe-Rxox7cKQkOZAQ_Jd37sc4p62ffhN1GXadkOXkX7ifgh9k-gwbmuM6ZpctK5PeHO6c_L9_PS1ei3W7y9vq-W68FDxXDTQCl4iVqh8KUWla-7qUmuJAkGVukTdIAjjlJeurqA1UhuAxk_vUqAWc3J39N3F8DNiynYTxjhMkVYAF4ZJM_nOyf2R8jGkFLG1u9htXdxbYPawkJX2tNDEPhzZqW12uQvDP_AfzOtlNg</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Tarver, Benjamin</creator><creator>Coimbra, Carlos F. M.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0006-0444-9392</orcidid><orcidid>https://orcid.org/0000-0002-9428-3931</orcidid><orcidid>https://orcid.org/0000-0003-1376-0423</orcidid></search><sort><creationdate>202410</creationdate><title>Particle response to oscillatory flows at finite Reynolds numbers</title><author>Tarver, Benjamin ; Coimbra, Carlos F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-d1f324ee8e6c45387b2ab4775e3e16474e7de139a6c5ab81f957911dc7de43e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Equations of motion</topic><topic>Euler-Lagrange equation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fractional calculus</topic><topic>Nonlinear response</topic><topic>Nonlinearity</topic><topic>Oscillating flow</topic><topic>Parameter modification</topic><topic>Particle density (concentration)</topic><topic>Reynolds number</topic><topic>Stokes flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarver, Benjamin</creatorcontrib><creatorcontrib>Coimbra, Carlos F. M.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarver, Benjamin</au><au>Coimbra, Carlos F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle response to oscillatory flows at finite Reynolds numbers</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-10</date><risdate>2024</risdate><volume>36</volume><issue>10</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The response of spherical particles to oscillatory fluid flow forcing at finite Reynolds numbers exhibits significant deviations from classical analytical predictions due to nonlinear convective contributions. This study employs finite element simulations to explore the long-term (stationary) behavior of such particles across a wide range of conditions, including various external and particle Reynolds numbers, Strouhal numbers, and fluid-to-particle density ratios. Key contributions of this work include determining the range of validity of Tchen's equation of motion for infinitesimal and finite Reynolds numbers and correlating particle response for a wide range of density ratios and flow conditions at high frequency oscillations. This work introduces a modified form of the history drag term in a newly proposed Lagrangian equation of motion. The new equation incorporates a parameter-dependent fractional-order derivative tailored to accommodate nonlinearities due to convective effects. These novel correlations not only extend the operational range of existing model equations but also provide accurate estimates of particle response under a range of external flow conditions, as validated by comparison with numerical solutions of the Navier–Stokes flow around the particles.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0229970</doi><tpages>18</tpages><orcidid>https://orcid.org/0009-0006-0444-9392</orcidid><orcidid>https://orcid.org/0000-0002-9428-3931</orcidid><orcidid>https://orcid.org/0000-0003-1376-0423</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-10, Vol.36 (10) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0229970 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Equations of motion Euler-Lagrange equation Fluid dynamics Fluid flow Fractional calculus Nonlinear response Nonlinearity Oscillating flow Parameter modification Particle density (concentration) Reynolds number Stokes flow |
title | Particle response to oscillatory flows at finite Reynolds numbers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20response%20to%20oscillatory%20flows%20at%20finite%20Reynolds%20numbers&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Tarver,%20Benjamin&rft.date=2024-10&rft.volume=36&rft.issue=10&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0229970&rft_dat=%3Cproquest_scita%3E3123905945%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c182t-d1f324ee8e6c45387b2ab4775e3e16474e7de139a6c5ab81f957911dc7de43e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123905945&rft_id=info:pmid/&rfr_iscdi=true |