Loading…
Two high-precision compact schemes for the dissipative symmetric regular long wave (SRLW) equation by multiple varying bounds integral method
This paper mainly focuses on the numerical study of fourth-order nonlinear dissipative symmetric regular long wave equation. We propose two new methods: the Multiple Varying Bounds Integral (MVBI) method and Taylor Function Fitted (TFF) method. With the multiple varying bounds integral method, all t...
Saved in:
Published in: | AIP advances 2024-12, Vol.14 (12) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c217t-6f26f86dab6fdf6152740d132cfbb570962cc7c3270b8120ac3cc0cc6735ee423 |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | AIP advances |
container_volume | 14 |
creator | Wu, Jianing Guo, Cui Fan, Boyu Zheng, Xiongbo Li, Xiaole Wang, Yixue |
description | This paper mainly focuses on the numerical study of fourth-order nonlinear dissipative symmetric regular long wave equation. We propose two new methods: the Multiple Varying Bounds Integral (MVBI) method and Taylor Function Fitted (TFF) method. With the multiple varying bounds integral method, all the derivatives in the space direction of the differential equation can be eliminated and we can get different numerical formats by adjusting the integral bound parameters. According to the physical properties of the original differential equation, we can choose an appropriate format from them. Meanwhile, with the Taylor function fitted method, the derivatives of the function at one point, such as first-order and second-order, can be approximated by the original function value at the points around it. Hence, with the MVBI method and TFF method, we can establish two compact and high-precision numerical schemes. In addition, we prove that these numerical schemes are consistent with the original equation on the energy property. Next, the convergence and stability of numerical solution U and P̃ are both proved. Finally, numerical experiments are carried out to verify the effectiveness of numerical schemes. |
doi_str_mv | 10.1063/5.0233771 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0233771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140641360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-6f26f86dab6fdf6152740d132cfbb570962cc7c3270b8120ac3cc0cc6735ee423</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsGgXvsGAGyukzk8yaZdS_IOCoBWXYXIzSaYkmXRm0tKH8J0dbReuvJt74XycyzkIXVEypUTwu2RKGOdpSk_QiNFkFnHGxOmf-xyNnVuTMPGcklk8Ql-rncG1ruqotwq006bDYNpegscOatUqh0tjsa8VLrRzupdebxV2-7ZV3mrAVlVDIy1uTFfhnQzazfvb8nOC1WYIbPDL97gdGq_7RuGttHsdwNwMXeGw7ryqrGxwMKtNcYnOStk4NT7uC_Tx-LBaPEfL16eXxf0yAkZTH4mSiXImCpmLsigFTVgak4JyBmWeJymZCwaQAmcpyWeUEQkcgACIlCdKxYxfoOuDb2_NZlDOZ2sz2C68zDiNiYgpFyRQkwMF1jhnVZn1VrchQEZJ9lN4lmTHwgN7e2AdaP8b-x_4G8cagds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140641360</pqid></control><display><type>article</type><title>Two high-precision compact schemes for the dissipative symmetric regular long wave (SRLW) equation by multiple varying bounds integral method</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Jianing ; Guo, Cui ; Fan, Boyu ; Zheng, Xiongbo ; Li, Xiaole ; Wang, Yixue</creator><creatorcontrib>Wu, Jianing ; Guo, Cui ; Fan, Boyu ; Zheng, Xiongbo ; Li, Xiaole ; Wang, Yixue</creatorcontrib><description>This paper mainly focuses on the numerical study of fourth-order nonlinear dissipative symmetric regular long wave equation. We propose two new methods: the Multiple Varying Bounds Integral (MVBI) method and Taylor Function Fitted (TFF) method. With the multiple varying bounds integral method, all the derivatives in the space direction of the differential equation can be eliminated and we can get different numerical formats by adjusting the integral bound parameters. According to the physical properties of the original differential equation, we can choose an appropriate format from them. Meanwhile, with the Taylor function fitted method, the derivatives of the function at one point, such as first-order and second-order, can be approximated by the original function value at the points around it. Hence, with the MVBI method and TFF method, we can establish two compact and high-precision numerical schemes. In addition, we prove that these numerical schemes are consistent with the original equation on the energy property. Next, the convergence and stability of numerical solution U and P̃ are both proved. Finally, numerical experiments are carried out to verify the effectiveness of numerical schemes.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0233771</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Derivatives ; Differential equations ; Dissipation ; Mathematical analysis ; Physical properties ; Wave equations</subject><ispartof>AIP advances, 2024-12, Vol.14 (12)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-6f26f86dab6fdf6152740d132cfbb570962cc7c3270b8120ac3cc0cc6735ee423</cites><orcidid>0009-0009-2653-0265 ; 0009-0002-1739-1274 ; 0000-0002-9178-049X ; 0000-0002-4943-4024 ; 0000-0002-8210-0931 ; 0009-0001-8749-8328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/5.0233771$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27890,27924,27925,76280</link.rule.ids></links><search><creatorcontrib>Wu, Jianing</creatorcontrib><creatorcontrib>Guo, Cui</creatorcontrib><creatorcontrib>Fan, Boyu</creatorcontrib><creatorcontrib>Zheng, Xiongbo</creatorcontrib><creatorcontrib>Li, Xiaole</creatorcontrib><creatorcontrib>Wang, Yixue</creatorcontrib><title>Two high-precision compact schemes for the dissipative symmetric regular long wave (SRLW) equation by multiple varying bounds integral method</title><title>AIP advances</title><description>This paper mainly focuses on the numerical study of fourth-order nonlinear dissipative symmetric regular long wave equation. We propose two new methods: the Multiple Varying Bounds Integral (MVBI) method and Taylor Function Fitted (TFF) method. With the multiple varying bounds integral method, all the derivatives in the space direction of the differential equation can be eliminated and we can get different numerical formats by adjusting the integral bound parameters. According to the physical properties of the original differential equation, we can choose an appropriate format from them. Meanwhile, with the Taylor function fitted method, the derivatives of the function at one point, such as first-order and second-order, can be approximated by the original function value at the points around it. Hence, with the MVBI method and TFF method, we can establish two compact and high-precision numerical schemes. In addition, we prove that these numerical schemes are consistent with the original equation on the energy property. Next, the convergence and stability of numerical solution U and P̃ are both proved. Finally, numerical experiments are carried out to verify the effectiveness of numerical schemes.</description><subject>Derivatives</subject><subject>Differential equations</subject><subject>Dissipation</subject><subject>Mathematical analysis</subject><subject>Physical properties</subject><subject>Wave equations</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kM1Kw0AUhQdRsGgXvsGAGyukzk8yaZdS_IOCoBWXYXIzSaYkmXRm0tKH8J0dbReuvJt74XycyzkIXVEypUTwu2RKGOdpSk_QiNFkFnHGxOmf-xyNnVuTMPGcklk8Ql-rncG1ruqotwq006bDYNpegscOatUqh0tjsa8VLrRzupdebxV2-7ZV3mrAVlVDIy1uTFfhnQzazfvb8nOC1WYIbPDL97gdGq_7RuGttHsdwNwMXeGw7ryqrGxwMKtNcYnOStk4NT7uC_Tx-LBaPEfL16eXxf0yAkZTH4mSiXImCpmLsigFTVgak4JyBmWeJymZCwaQAmcpyWeUEQkcgACIlCdKxYxfoOuDb2_NZlDOZ2sz2C68zDiNiYgpFyRQkwMF1jhnVZn1VrchQEZJ9lN4lmTHwgN7e2AdaP8b-x_4G8cagds</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Wu, Jianing</creator><creator>Guo, Cui</creator><creator>Fan, Boyu</creator><creator>Zheng, Xiongbo</creator><creator>Li, Xiaole</creator><creator>Wang, Yixue</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-2653-0265</orcidid><orcidid>https://orcid.org/0009-0002-1739-1274</orcidid><orcidid>https://orcid.org/0000-0002-9178-049X</orcidid><orcidid>https://orcid.org/0000-0002-4943-4024</orcidid><orcidid>https://orcid.org/0000-0002-8210-0931</orcidid><orcidid>https://orcid.org/0009-0001-8749-8328</orcidid></search><sort><creationdate>20241201</creationdate><title>Two high-precision compact schemes for the dissipative symmetric regular long wave (SRLW) equation by multiple varying bounds integral method</title><author>Wu, Jianing ; Guo, Cui ; Fan, Boyu ; Zheng, Xiongbo ; Li, Xiaole ; Wang, Yixue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-6f26f86dab6fdf6152740d132cfbb570962cc7c3270b8120ac3cc0cc6735ee423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Derivatives</topic><topic>Differential equations</topic><topic>Dissipation</topic><topic>Mathematical analysis</topic><topic>Physical properties</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jianing</creatorcontrib><creatorcontrib>Guo, Cui</creatorcontrib><creatorcontrib>Fan, Boyu</creatorcontrib><creatorcontrib>Zheng, Xiongbo</creatorcontrib><creatorcontrib>Li, Xiaole</creatorcontrib><creatorcontrib>Wang, Yixue</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jianing</au><au>Guo, Cui</au><au>Fan, Boyu</au><au>Zheng, Xiongbo</au><au>Li, Xiaole</au><au>Wang, Yixue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two high-precision compact schemes for the dissipative symmetric regular long wave (SRLW) equation by multiple varying bounds integral method</atitle><jtitle>AIP advances</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>14</volume><issue>12</issue><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>This paper mainly focuses on the numerical study of fourth-order nonlinear dissipative symmetric regular long wave equation. We propose two new methods: the Multiple Varying Bounds Integral (MVBI) method and Taylor Function Fitted (TFF) method. With the multiple varying bounds integral method, all the derivatives in the space direction of the differential equation can be eliminated and we can get different numerical formats by adjusting the integral bound parameters. According to the physical properties of the original differential equation, we can choose an appropriate format from them. Meanwhile, with the Taylor function fitted method, the derivatives of the function at one point, such as first-order and second-order, can be approximated by the original function value at the points around it. Hence, with the MVBI method and TFF method, we can establish two compact and high-precision numerical schemes. In addition, we prove that these numerical schemes are consistent with the original equation on the energy property. Next, the convergence and stability of numerical solution U and P̃ are both proved. Finally, numerical experiments are carried out to verify the effectiveness of numerical schemes.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0233771</doi><tpages>25</tpages><orcidid>https://orcid.org/0009-0009-2653-0265</orcidid><orcidid>https://orcid.org/0009-0002-1739-1274</orcidid><orcidid>https://orcid.org/0000-0002-9178-049X</orcidid><orcidid>https://orcid.org/0000-0002-4943-4024</orcidid><orcidid>https://orcid.org/0000-0002-8210-0931</orcidid><orcidid>https://orcid.org/0009-0001-8749-8328</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2024-12, Vol.14 (12) |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0233771 |
source | AIP Open Access Journals; Free Full-Text Journals in Chemistry |
subjects | Derivatives Differential equations Dissipation Mathematical analysis Physical properties Wave equations |
title | Two high-precision compact schemes for the dissipative symmetric regular long wave (SRLW) equation by multiple varying bounds integral method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20high-precision%20compact%20schemes%20for%20the%20dissipative%20symmetric%20regular%20long%20wave%20(SRLW)%20equation%20by%20multiple%20varying%20bounds%20integral%20method&rft.jtitle=AIP%20advances&rft.au=Wu,%20Jianing&rft.date=2024-12-01&rft.volume=14&rft.issue=12&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0233771&rft_dat=%3Cproquest_cross%3E3140641360%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c217t-6f26f86dab6fdf6152740d132cfbb570962cc7c3270b8120ac3cc0cc6735ee423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3140641360&rft_id=info:pmid/&rfr_iscdi=true |