Loading…

Two high-precision compact schemes for the dissipative symmetric regular long wave (SRLW) equation by multiple varying bounds integral method

This paper mainly focuses on the numerical study of fourth-order nonlinear dissipative symmetric regular long wave equation. We propose two new methods: the Multiple Varying Bounds Integral (MVBI) method and Taylor Function Fitted (TFF) method. With the multiple varying bounds integral method, all t...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2024-12, Vol.14 (12)
Main Authors: Wu, Jianing, Guo, Cui, Fan, Boyu, Zheng, Xiongbo, Li, Xiaole, Wang, Yixue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c217t-6f26f86dab6fdf6152740d132cfbb570962cc7c3270b8120ac3cc0cc6735ee423
container_end_page
container_issue 12
container_start_page
container_title AIP advances
container_volume 14
creator Wu, Jianing
Guo, Cui
Fan, Boyu
Zheng, Xiongbo
Li, Xiaole
Wang, Yixue
description This paper mainly focuses on the numerical study of fourth-order nonlinear dissipative symmetric regular long wave equation. We propose two new methods: the Multiple Varying Bounds Integral (MVBI) method and Taylor Function Fitted (TFF) method. With the multiple varying bounds integral method, all the derivatives in the space direction of the differential equation can be eliminated and we can get different numerical formats by adjusting the integral bound parameters. According to the physical properties of the original differential equation, we can choose an appropriate format from them. Meanwhile, with the Taylor function fitted method, the derivatives of the function at one point, such as first-order and second-order, can be approximated by the original function value at the points around it. Hence, with the MVBI method and TFF method, we can establish two compact and high-precision numerical schemes. In addition, we prove that these numerical schemes are consistent with the original equation on the energy property. Next, the convergence and stability of numerical solution U and P̃ are both proved. Finally, numerical experiments are carried out to verify the effectiveness of numerical schemes.
doi_str_mv 10.1063/5.0233771
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0233771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140641360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-6f26f86dab6fdf6152740d132cfbb570962cc7c3270b8120ac3cc0cc6735ee423</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsGgXvsGAGyukzk8yaZdS_IOCoBWXYXIzSaYkmXRm0tKH8J0dbReuvJt74XycyzkIXVEypUTwu2RKGOdpSk_QiNFkFnHGxOmf-xyNnVuTMPGcklk8Ql-rncG1ruqotwq006bDYNpegscOatUqh0tjsa8VLrRzupdebxV2-7ZV3mrAVlVDIy1uTFfhnQzazfvb8nOC1WYIbPDL97gdGq_7RuGttHsdwNwMXeGw7ryqrGxwMKtNcYnOStk4NT7uC_Tx-LBaPEfL16eXxf0yAkZTH4mSiXImCpmLsigFTVgak4JyBmWeJymZCwaQAmcpyWeUEQkcgACIlCdKxYxfoOuDb2_NZlDOZ2sz2C68zDiNiYgpFyRQkwMF1jhnVZn1VrchQEZJ9lN4lmTHwgN7e2AdaP8b-x_4G8cagds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140641360</pqid></control><display><type>article</type><title>Two high-precision compact schemes for the dissipative symmetric regular long wave (SRLW) equation by multiple varying bounds integral method</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Jianing ; Guo, Cui ; Fan, Boyu ; Zheng, Xiongbo ; Li, Xiaole ; Wang, Yixue</creator><creatorcontrib>Wu, Jianing ; Guo, Cui ; Fan, Boyu ; Zheng, Xiongbo ; Li, Xiaole ; Wang, Yixue</creatorcontrib><description>This paper mainly focuses on the numerical study of fourth-order nonlinear dissipative symmetric regular long wave equation. We propose two new methods: the Multiple Varying Bounds Integral (MVBI) method and Taylor Function Fitted (TFF) method. With the multiple varying bounds integral method, all the derivatives in the space direction of the differential equation can be eliminated and we can get different numerical formats by adjusting the integral bound parameters. According to the physical properties of the original differential equation, we can choose an appropriate format from them. Meanwhile, with the Taylor function fitted method, the derivatives of the function at one point, such as first-order and second-order, can be approximated by the original function value at the points around it. Hence, with the MVBI method and TFF method, we can establish two compact and high-precision numerical schemes. In addition, we prove that these numerical schemes are consistent with the original equation on the energy property. Next, the convergence and stability of numerical solution U and P̃ are both proved. Finally, numerical experiments are carried out to verify the effectiveness of numerical schemes.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0233771</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Derivatives ; Differential equations ; Dissipation ; Mathematical analysis ; Physical properties ; Wave equations</subject><ispartof>AIP advances, 2024-12, Vol.14 (12)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-6f26f86dab6fdf6152740d132cfbb570962cc7c3270b8120ac3cc0cc6735ee423</cites><orcidid>0009-0009-2653-0265 ; 0009-0002-1739-1274 ; 0000-0002-9178-049X ; 0000-0002-4943-4024 ; 0000-0002-8210-0931 ; 0009-0001-8749-8328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/5.0233771$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27890,27924,27925,76280</link.rule.ids></links><search><creatorcontrib>Wu, Jianing</creatorcontrib><creatorcontrib>Guo, Cui</creatorcontrib><creatorcontrib>Fan, Boyu</creatorcontrib><creatorcontrib>Zheng, Xiongbo</creatorcontrib><creatorcontrib>Li, Xiaole</creatorcontrib><creatorcontrib>Wang, Yixue</creatorcontrib><title>Two high-precision compact schemes for the dissipative symmetric regular long wave (SRLW) equation by multiple varying bounds integral method</title><title>AIP advances</title><description>This paper mainly focuses on the numerical study of fourth-order nonlinear dissipative symmetric regular long wave equation. We propose two new methods: the Multiple Varying Bounds Integral (MVBI) method and Taylor Function Fitted (TFF) method. With the multiple varying bounds integral method, all the derivatives in the space direction of the differential equation can be eliminated and we can get different numerical formats by adjusting the integral bound parameters. According to the physical properties of the original differential equation, we can choose an appropriate format from them. Meanwhile, with the Taylor function fitted method, the derivatives of the function at one point, such as first-order and second-order, can be approximated by the original function value at the points around it. Hence, with the MVBI method and TFF method, we can establish two compact and high-precision numerical schemes. In addition, we prove that these numerical schemes are consistent with the original equation on the energy property. Next, the convergence and stability of numerical solution U and P̃ are both proved. Finally, numerical experiments are carried out to verify the effectiveness of numerical schemes.</description><subject>Derivatives</subject><subject>Differential equations</subject><subject>Dissipation</subject><subject>Mathematical analysis</subject><subject>Physical properties</subject><subject>Wave equations</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kM1Kw0AUhQdRsGgXvsGAGyukzk8yaZdS_IOCoBWXYXIzSaYkmXRm0tKH8J0dbReuvJt74XycyzkIXVEypUTwu2RKGOdpSk_QiNFkFnHGxOmf-xyNnVuTMPGcklk8Ql-rncG1ruqotwq006bDYNpegscOatUqh0tjsa8VLrRzupdebxV2-7ZV3mrAVlVDIy1uTFfhnQzazfvb8nOC1WYIbPDL97gdGq_7RuGttHsdwNwMXeGw7ryqrGxwMKtNcYnOStk4NT7uC_Tx-LBaPEfL16eXxf0yAkZTH4mSiXImCpmLsigFTVgak4JyBmWeJymZCwaQAmcpyWeUEQkcgACIlCdKxYxfoOuDb2_NZlDOZ2sz2C68zDiNiYgpFyRQkwMF1jhnVZn1VrchQEZJ9lN4lmTHwgN7e2AdaP8b-x_4G8cagds</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Wu, Jianing</creator><creator>Guo, Cui</creator><creator>Fan, Boyu</creator><creator>Zheng, Xiongbo</creator><creator>Li, Xiaole</creator><creator>Wang, Yixue</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-2653-0265</orcidid><orcidid>https://orcid.org/0009-0002-1739-1274</orcidid><orcidid>https://orcid.org/0000-0002-9178-049X</orcidid><orcidid>https://orcid.org/0000-0002-4943-4024</orcidid><orcidid>https://orcid.org/0000-0002-8210-0931</orcidid><orcidid>https://orcid.org/0009-0001-8749-8328</orcidid></search><sort><creationdate>20241201</creationdate><title>Two high-precision compact schemes for the dissipative symmetric regular long wave (SRLW) equation by multiple varying bounds integral method</title><author>Wu, Jianing ; Guo, Cui ; Fan, Boyu ; Zheng, Xiongbo ; Li, Xiaole ; Wang, Yixue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-6f26f86dab6fdf6152740d132cfbb570962cc7c3270b8120ac3cc0cc6735ee423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Derivatives</topic><topic>Differential equations</topic><topic>Dissipation</topic><topic>Mathematical analysis</topic><topic>Physical properties</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jianing</creatorcontrib><creatorcontrib>Guo, Cui</creatorcontrib><creatorcontrib>Fan, Boyu</creatorcontrib><creatorcontrib>Zheng, Xiongbo</creatorcontrib><creatorcontrib>Li, Xiaole</creatorcontrib><creatorcontrib>Wang, Yixue</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jianing</au><au>Guo, Cui</au><au>Fan, Boyu</au><au>Zheng, Xiongbo</au><au>Li, Xiaole</au><au>Wang, Yixue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two high-precision compact schemes for the dissipative symmetric regular long wave (SRLW) equation by multiple varying bounds integral method</atitle><jtitle>AIP advances</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>14</volume><issue>12</issue><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>This paper mainly focuses on the numerical study of fourth-order nonlinear dissipative symmetric regular long wave equation. We propose two new methods: the Multiple Varying Bounds Integral (MVBI) method and Taylor Function Fitted (TFF) method. With the multiple varying bounds integral method, all the derivatives in the space direction of the differential equation can be eliminated and we can get different numerical formats by adjusting the integral bound parameters. According to the physical properties of the original differential equation, we can choose an appropriate format from them. Meanwhile, with the Taylor function fitted method, the derivatives of the function at one point, such as first-order and second-order, can be approximated by the original function value at the points around it. Hence, with the MVBI method and TFF method, we can establish two compact and high-precision numerical schemes. In addition, we prove that these numerical schemes are consistent with the original equation on the energy property. Next, the convergence and stability of numerical solution U and P̃ are both proved. Finally, numerical experiments are carried out to verify the effectiveness of numerical schemes.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0233771</doi><tpages>25</tpages><orcidid>https://orcid.org/0009-0009-2653-0265</orcidid><orcidid>https://orcid.org/0009-0002-1739-1274</orcidid><orcidid>https://orcid.org/0000-0002-9178-049X</orcidid><orcidid>https://orcid.org/0000-0002-4943-4024</orcidid><orcidid>https://orcid.org/0000-0002-8210-0931</orcidid><orcidid>https://orcid.org/0009-0001-8749-8328</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2024-12, Vol.14 (12)
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_5_0233771
source AIP Open Access Journals; Free Full-Text Journals in Chemistry
subjects Derivatives
Differential equations
Dissipation
Mathematical analysis
Physical properties
Wave equations
title Two high-precision compact schemes for the dissipative symmetric regular long wave (SRLW) equation by multiple varying bounds integral method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20high-precision%20compact%20schemes%20for%20the%20dissipative%20symmetric%20regular%20long%20wave%20(SRLW)%20equation%20by%20multiple%20varying%20bounds%20integral%20method&rft.jtitle=AIP%20advances&rft.au=Wu,%20Jianing&rft.date=2024-12-01&rft.volume=14&rft.issue=12&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0233771&rft_dat=%3Cproquest_cross%3E3140641360%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c217t-6f26f86dab6fdf6152740d132cfbb570962cc7c3270b8120ac3cc0cc6735ee423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3140641360&rft_id=info:pmid/&rfr_iscdi=true