Loading…
PbZrO3-based thin film capacitors with high energy storage efficiency
Antiferroelectric (Pb0.87Sr0.05Ba0.05La0.02)(Zr0.52Sn0.40Ti0.08)O3 thin film capacitors were fabricated for dielectric energy storage. Thin films with excellent crystal quality (FWHM 0.021°) were prepared on (100) SrRuO3/SrTiO3 substrates by pulsed laser deposition. The out-of-plane lattice constant...
Saved in:
Published in: | Applied physics letters 2024-11, Vol.125 (21) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Antiferroelectric (Pb0.87Sr0.05Ba0.05La0.02)(Zr0.52Sn0.40Ti0.08)O3 thin film capacitors were fabricated for dielectric energy storage. Thin films with excellent crystal quality (FWHM 0.021°) were prepared on (100) SrRuO3/SrTiO3 substrates by pulsed laser deposition. The out-of-plane lattice constant of the thin film was 4.110
± 0.001 Å. An average maximum recoverable energy storage density, 88
± 17 J cm−3 with an efficiency of 85%
± 6% at 1 kHz and 80
± 15 J cm−3 with an efficiency of 91%
± 4% at 10 kHz, was achieved at room temperature. The capacitor was fatigue resistant up to 106 cycles at an applied electric field of 2 MV cm−1. These properties are linked to a low level of hysteresis and slow polarization saturation. PbZrO3-derived oxide thin film capacitors are promising for high efficiency and low loss dielectric energy storage applications. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0237948 |