Loading…
Indisent: Cross-lingual sentiment analysis
We propose Indisent, an api service that provides sentiment analysis for 11 indic languages and is also capable of translating text from indic languages to english and vice versa. Indisent performs translation by making use of neural machine translation based on a transformer model trained on the sa...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3188 |
creator | Ansari, Nazneen lopes, Monalisa Shaikh, Hussain D’Mello, Blaise Shah, Dharmit Rodrigues, Linson |
description | We propose Indisent, an api service that provides sentiment analysis for 11 indic languages and is also capable of translating text from indic languages to english and vice versa. Indisent performs translation by making use of neural machine translation based on a transformer model trained on the samanantar dataset. It performs sentiment analysis by translating text into english and then uses a pre-trained sentiment analysis model SiEBERT. Using this approach we are able to achieve cross-lingual sentiment analysis with increased accuracy for low resource indic languages. Using state of the art transformer models the need of training multiple models for each language is also eliminated. |
doi_str_mv | 10.1063/5.0240373 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0240373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142698478</sourcerecordid><originalsourceid>FETCH-LOGICAL-p633-a06ded66cc1d2ee4c24486fceb921304c4845e5531171834c47bbc627c5edac13</originalsourceid><addsrcrecordid>eNotUM1Kw0AYXETBWD34BgFvha377bd_8SbBaqHgpQdvy2azlS1pErPJoW9vSnuZYYZhGIaQZ2ArYApf5YpxwVDjDclASqBagbolGWOFoFzgzz15SOnAGC-0NhlZbto6ptCOb3k5dCnRJra_k2vysxePM-Sudc0pxfRI7vauSeHpyguyW3_syi-6_f7clO9b2itE6piqQ62U91DzEITnQhi196EqOCATXhghg5QIoMHgrHVVecW1l6F2HnBBXi61_dD9TSGN9tBNw7whWQTBVWGENnNqeUklH0c3xq61_RCPbjhZYPZ8hZX2egX-A_EeTv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3142698478</pqid></control><display><type>conference_proceeding</type><title>Indisent: Cross-lingual sentiment analysis</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Ansari, Nazneen ; lopes, Monalisa ; Shaikh, Hussain ; D’Mello, Blaise ; Shah, Dharmit ; Rodrigues, Linson</creator><contributor>Gawande, Snehal P. ; Rajguru, Vijaya S. ; Adhau, Sarala P.</contributor><creatorcontrib>Ansari, Nazneen ; lopes, Monalisa ; Shaikh, Hussain ; D’Mello, Blaise ; Shah, Dharmit ; Rodrigues, Linson ; Gawande, Snehal P. ; Rajguru, Vijaya S. ; Adhau, Sarala P.</creatorcontrib><description>We propose Indisent, an api service that provides sentiment analysis for 11 indic languages and is also capable of translating text from indic languages to english and vice versa. Indisent performs translation by making use of neural machine translation based on a transformer model trained on the samanantar dataset. It performs sentiment analysis by translating text into english and then uses a pre-trained sentiment analysis model SiEBERT. Using this approach we are able to achieve cross-lingual sentiment analysis with increased accuracy for low resource indic languages. Using state of the art transformer models the need of training multiple models for each language is also eliminated.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0240373</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Languages ; Machine translation ; Sentiment analysis ; Translating</subject><ispartof>AIP conference proceedings, 2024, Vol.3188 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Gawande, Snehal P.</contributor><contributor>Rajguru, Vijaya S.</contributor><contributor>Adhau, Sarala P.</contributor><creatorcontrib>Ansari, Nazneen</creatorcontrib><creatorcontrib>lopes, Monalisa</creatorcontrib><creatorcontrib>Shaikh, Hussain</creatorcontrib><creatorcontrib>D’Mello, Blaise</creatorcontrib><creatorcontrib>Shah, Dharmit</creatorcontrib><creatorcontrib>Rodrigues, Linson</creatorcontrib><title>Indisent: Cross-lingual sentiment analysis</title><title>AIP conference proceedings</title><description>We propose Indisent, an api service that provides sentiment analysis for 11 indic languages and is also capable of translating text from indic languages to english and vice versa. Indisent performs translation by making use of neural machine translation based on a transformer model trained on the samanantar dataset. It performs sentiment analysis by translating text into english and then uses a pre-trained sentiment analysis model SiEBERT. Using this approach we are able to achieve cross-lingual sentiment analysis with increased accuracy for low resource indic languages. Using state of the art transformer models the need of training multiple models for each language is also eliminated.</description><subject>Languages</subject><subject>Machine translation</subject><subject>Sentiment analysis</subject><subject>Translating</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUM1Kw0AYXETBWD34BgFvha377bd_8SbBaqHgpQdvy2azlS1pErPJoW9vSnuZYYZhGIaQZ2ArYApf5YpxwVDjDclASqBagbolGWOFoFzgzz15SOnAGC-0NhlZbto6ptCOb3k5dCnRJra_k2vysxePM-Sudc0pxfRI7vauSeHpyguyW3_syi-6_f7clO9b2itE6piqQ62U91DzEITnQhi196EqOCATXhghg5QIoMHgrHVVecW1l6F2HnBBXi61_dD9TSGN9tBNw7whWQTBVWGENnNqeUklH0c3xq61_RCPbjhZYPZ8hZX2egX-A_EeTv8</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Ansari, Nazneen</creator><creator>lopes, Monalisa</creator><creator>Shaikh, Hussain</creator><creator>D’Mello, Blaise</creator><creator>Shah, Dharmit</creator><creator>Rodrigues, Linson</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241210</creationdate><title>Indisent: Cross-lingual sentiment analysis</title><author>Ansari, Nazneen ; lopes, Monalisa ; Shaikh, Hussain ; D’Mello, Blaise ; Shah, Dharmit ; Rodrigues, Linson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p633-a06ded66cc1d2ee4c24486fceb921304c4845e5531171834c47bbc627c5edac13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Languages</topic><topic>Machine translation</topic><topic>Sentiment analysis</topic><topic>Translating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ansari, Nazneen</creatorcontrib><creatorcontrib>lopes, Monalisa</creatorcontrib><creatorcontrib>Shaikh, Hussain</creatorcontrib><creatorcontrib>D’Mello, Blaise</creatorcontrib><creatorcontrib>Shah, Dharmit</creatorcontrib><creatorcontrib>Rodrigues, Linson</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ansari, Nazneen</au><au>lopes, Monalisa</au><au>Shaikh, Hussain</au><au>D’Mello, Blaise</au><au>Shah, Dharmit</au><au>Rodrigues, Linson</au><au>Gawande, Snehal P.</au><au>Rajguru, Vijaya S.</au><au>Adhau, Sarala P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Indisent: Cross-lingual sentiment analysis</atitle><btitle>AIP conference proceedings</btitle><date>2024-12-10</date><risdate>2024</risdate><volume>3188</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We propose Indisent, an api service that provides sentiment analysis for 11 indic languages and is also capable of translating text from indic languages to english and vice versa. Indisent performs translation by making use of neural machine translation based on a transformer model trained on the samanantar dataset. It performs sentiment analysis by translating text into english and then uses a pre-trained sentiment analysis model SiEBERT. Using this approach we are able to achieve cross-lingual sentiment analysis with increased accuracy for low resource indic languages. Using state of the art transformer models the need of training multiple models for each language is also eliminated.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0240373</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3188 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0240373 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Languages Machine translation Sentiment analysis Translating |
title | Indisent: Cross-lingual sentiment analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Indisent:%20Cross-lingual%20sentiment%20analysis&rft.btitle=AIP%20conference%20proceedings&rft.au=Ansari,%20Nazneen&rft.date=2024-12-10&rft.volume=3188&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0240373&rft_dat=%3Cproquest_scita%3E3142698478%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p633-a06ded66cc1d2ee4c24486fceb921304c4845e5531171834c47bbc627c5edac13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142698478&rft_id=info:pmid/&rfr_iscdi=true |