Loading…

Indisent: Cross-lingual sentiment analysis

We propose Indisent, an api service that provides sentiment analysis for 11 indic languages and is also capable of translating text from indic languages to english and vice versa. Indisent performs translation by making use of neural machine translation based on a transformer model trained on the sa...

Full description

Saved in:
Bibliographic Details
Main Authors: Ansari, Nazneen, lopes, Monalisa, Shaikh, Hussain, D’Mello, Blaise, Shah, Dharmit, Rodrigues, Linson
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3188
creator Ansari, Nazneen
lopes, Monalisa
Shaikh, Hussain
D’Mello, Blaise
Shah, Dharmit
Rodrigues, Linson
description We propose Indisent, an api service that provides sentiment analysis for 11 indic languages and is also capable of translating text from indic languages to english and vice versa. Indisent performs translation by making use of neural machine translation based on a transformer model trained on the samanantar dataset. It performs sentiment analysis by translating text into english and then uses a pre-trained sentiment analysis model SiEBERT. Using this approach we are able to achieve cross-lingual sentiment analysis with increased accuracy for low resource indic languages. Using state of the art transformer models the need of training multiple models for each language is also eliminated.
doi_str_mv 10.1063/5.0240373
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0240373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142698478</sourcerecordid><originalsourceid>FETCH-LOGICAL-p633-a06ded66cc1d2ee4c24486fceb921304c4845e5531171834c47bbc627c5edac13</originalsourceid><addsrcrecordid>eNotUM1Kw0AYXETBWD34BgFvha377bd_8SbBaqHgpQdvy2azlS1pErPJoW9vSnuZYYZhGIaQZ2ArYApf5YpxwVDjDclASqBagbolGWOFoFzgzz15SOnAGC-0NhlZbto6ptCOb3k5dCnRJra_k2vysxePM-Sudc0pxfRI7vauSeHpyguyW3_syi-6_f7clO9b2itE6piqQ62U91DzEITnQhi196EqOCATXhghg5QIoMHgrHVVecW1l6F2HnBBXi61_dD9TSGN9tBNw7whWQTBVWGENnNqeUklH0c3xq61_RCPbjhZYPZ8hZX2egX-A_EeTv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3142698478</pqid></control><display><type>conference_proceeding</type><title>Indisent: Cross-lingual sentiment analysis</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Ansari, Nazneen ; lopes, Monalisa ; Shaikh, Hussain ; D’Mello, Blaise ; Shah, Dharmit ; Rodrigues, Linson</creator><contributor>Gawande, Snehal P. ; Rajguru, Vijaya S. ; Adhau, Sarala P.</contributor><creatorcontrib>Ansari, Nazneen ; lopes, Monalisa ; Shaikh, Hussain ; D’Mello, Blaise ; Shah, Dharmit ; Rodrigues, Linson ; Gawande, Snehal P. ; Rajguru, Vijaya S. ; Adhau, Sarala P.</creatorcontrib><description>We propose Indisent, an api service that provides sentiment analysis for 11 indic languages and is also capable of translating text from indic languages to english and vice versa. Indisent performs translation by making use of neural machine translation based on a transformer model trained on the samanantar dataset. It performs sentiment analysis by translating text into english and then uses a pre-trained sentiment analysis model SiEBERT. Using this approach we are able to achieve cross-lingual sentiment analysis with increased accuracy for low resource indic languages. Using state of the art transformer models the need of training multiple models for each language is also eliminated.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0240373</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Languages ; Machine translation ; Sentiment analysis ; Translating</subject><ispartof>AIP conference proceedings, 2024, Vol.3188 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Gawande, Snehal P.</contributor><contributor>Rajguru, Vijaya S.</contributor><contributor>Adhau, Sarala P.</contributor><creatorcontrib>Ansari, Nazneen</creatorcontrib><creatorcontrib>lopes, Monalisa</creatorcontrib><creatorcontrib>Shaikh, Hussain</creatorcontrib><creatorcontrib>D’Mello, Blaise</creatorcontrib><creatorcontrib>Shah, Dharmit</creatorcontrib><creatorcontrib>Rodrigues, Linson</creatorcontrib><title>Indisent: Cross-lingual sentiment analysis</title><title>AIP conference proceedings</title><description>We propose Indisent, an api service that provides sentiment analysis for 11 indic languages and is also capable of translating text from indic languages to english and vice versa. Indisent performs translation by making use of neural machine translation based on a transformer model trained on the samanantar dataset. It performs sentiment analysis by translating text into english and then uses a pre-trained sentiment analysis model SiEBERT. Using this approach we are able to achieve cross-lingual sentiment analysis with increased accuracy for low resource indic languages. Using state of the art transformer models the need of training multiple models for each language is also eliminated.</description><subject>Languages</subject><subject>Machine translation</subject><subject>Sentiment analysis</subject><subject>Translating</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUM1Kw0AYXETBWD34BgFvha377bd_8SbBaqHgpQdvy2azlS1pErPJoW9vSnuZYYZhGIaQZ2ArYApf5YpxwVDjDclASqBagbolGWOFoFzgzz15SOnAGC-0NhlZbto6ptCOb3k5dCnRJra_k2vysxePM-Sudc0pxfRI7vauSeHpyguyW3_syi-6_f7clO9b2itE6piqQ62U91DzEITnQhi196EqOCATXhghg5QIoMHgrHVVecW1l6F2HnBBXi61_dD9TSGN9tBNw7whWQTBVWGENnNqeUklH0c3xq61_RCPbjhZYPZ8hZX2egX-A_EeTv8</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Ansari, Nazneen</creator><creator>lopes, Monalisa</creator><creator>Shaikh, Hussain</creator><creator>D’Mello, Blaise</creator><creator>Shah, Dharmit</creator><creator>Rodrigues, Linson</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241210</creationdate><title>Indisent: Cross-lingual sentiment analysis</title><author>Ansari, Nazneen ; lopes, Monalisa ; Shaikh, Hussain ; D’Mello, Blaise ; Shah, Dharmit ; Rodrigues, Linson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p633-a06ded66cc1d2ee4c24486fceb921304c4845e5531171834c47bbc627c5edac13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Languages</topic><topic>Machine translation</topic><topic>Sentiment analysis</topic><topic>Translating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ansari, Nazneen</creatorcontrib><creatorcontrib>lopes, Monalisa</creatorcontrib><creatorcontrib>Shaikh, Hussain</creatorcontrib><creatorcontrib>D’Mello, Blaise</creatorcontrib><creatorcontrib>Shah, Dharmit</creatorcontrib><creatorcontrib>Rodrigues, Linson</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ansari, Nazneen</au><au>lopes, Monalisa</au><au>Shaikh, Hussain</au><au>D’Mello, Blaise</au><au>Shah, Dharmit</au><au>Rodrigues, Linson</au><au>Gawande, Snehal P.</au><au>Rajguru, Vijaya S.</au><au>Adhau, Sarala P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Indisent: Cross-lingual sentiment analysis</atitle><btitle>AIP conference proceedings</btitle><date>2024-12-10</date><risdate>2024</risdate><volume>3188</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We propose Indisent, an api service that provides sentiment analysis for 11 indic languages and is also capable of translating text from indic languages to english and vice versa. Indisent performs translation by making use of neural machine translation based on a transformer model trained on the samanantar dataset. It performs sentiment analysis by translating text into english and then uses a pre-trained sentiment analysis model SiEBERT. Using this approach we are able to achieve cross-lingual sentiment analysis with increased accuracy for low resource indic languages. Using state of the art transformer models the need of training multiple models for each language is also eliminated.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0240373</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3188 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0240373
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Languages
Machine translation
Sentiment analysis
Translating
title Indisent: Cross-lingual sentiment analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Indisent:%20Cross-lingual%20sentiment%20analysis&rft.btitle=AIP%20conference%20proceedings&rft.au=Ansari,%20Nazneen&rft.date=2024-12-10&rft.volume=3188&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0240373&rft_dat=%3Cproquest_scita%3E3142698478%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p633-a06ded66cc1d2ee4c24486fceb921304c4845e5531171834c47bbc627c5edac13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142698478&rft_id=info:pmid/&rfr_iscdi=true