Loading…
Improved quantum confinement of self-assembled high-density InAs quantum dot molecules in Al Ga As ∕ Ga As quantum well structures by molecular beam epitaxy
Self-assembled, multistack InAs quantum dot molecules (QDMs) were grown by a modified molecular beam epitaxial (MBE) technique, which involves multiple stacking and multiple cycling of the thin-capping-and-regrowth process, so as to obtain a large volume density of quantum dots on the sample. Furthe...
Saved in:
Published in: | Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena Microelectronics and nanometer structures processing, measurement and phenomena, 2008-05, Vol.26 (3), p.1100-1104 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Self-assembled, multistack InAs quantum dot molecules (QDMs) were grown by a modified molecular beam epitaxial (MBE) technique, which involves multiple stacking and multiple cycling of the thin-capping-and-regrowth process, so as to obtain a large volume density of quantum dots on the sample. Furthermore, the high-density InAs QDMs were also grown sandwiched either between a double heterostructure (DHS) or between a quantum-well (QW) structure. It was found from microphotoluminescence (
μ
-PL) measurements that the QDMs sandwiched between these structures give broader PL spectra than those of the as-grown QDMs. The broadening of the PL spectra is associated with the poorer dot size uniformity, which arises from the long and complicated MBE growth processes. However, comparing between the QDMs in the DHS and in the QW structure, the latter give narrower PL spectra. The narrower PL spectra for the QDM-in-QW structure is attributed to the improved quantum confinement effect arising from the use of the QW. |
---|---|
ISSN: | 1071-1023 1520-8567 |
DOI: | 10.1116/1.2835064 |