Loading…

Effect of in situ hydrogen plasma treatment on zinc oxide grown using low temperature atomic layer deposition

Zinc oxide (ZnO) films under in situ hydrogen plasma were deposited via atomic layer deposition (ALD) at an extremely low temperature (100 °C). Diethyl zinc ((C2H5)2Zn) and deionized water were used as the zinc and oxygen source, respectively. The growth rate of the ZnO films decreased to 1.26 and 1...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2013-01, Vol.31 (1)
Main Authors: Jung, Tae-Hoon, Park, Jin-Seong, Kim, Dong-Ho, Jeong, Yongsoo, Park, Sung-Gyu, Kwon, Jung-Dae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-a7e42303cab54c43a6efdda99d2e448e30855384c452b93bf5a52be3be2d665a3
cites cdi_FETCH-LOGICAL-c327t-a7e42303cab54c43a6efdda99d2e448e30855384c452b93bf5a52be3be2d665a3
container_end_page
container_issue 1
container_start_page
container_title Journal of vacuum science & technology. A, Vacuum, surfaces, and films
container_volume 31
creator Jung, Tae-Hoon
Park, Jin-Seong
Kim, Dong-Ho
Jeong, Yongsoo
Park, Sung-Gyu
Kwon, Jung-Dae
description Zinc oxide (ZnO) films under in situ hydrogen plasma were deposited via atomic layer deposition (ALD) at an extremely low temperature (100 °C). Diethyl zinc ((C2H5)2Zn) and deionized water were used as the zinc and oxygen source, respectively. The growth rate of the ZnO films decreased to 1.26 and 1.06 Å/cycle due to changes in the hydrogen plasma treatment power and exposure time, respectively. The resistivity of the ZnO films decreased to 7.6 × 10−4 Ω cm, even at 100 °C, with a very high carrier concentration (1.4 × 1021 cm−3) due to the increasing oxygen deficiencies in the ZnO films. The carrier mobility was decreased slightly to 8.6 cm2/Vs via grain boundary scattering due to the enhanced polycrystallization. Based on the x-ray diffraction and x-ray photoelectron spectroscopy, the carrier concentration and mobility were strongly correlated to the oxygen deficiency and crystallinity, respectively. In addition, the in situ hydrogen plasma in the ZnO ALD had an important role in sequentially generating oxygen deficiencies and enhancing polycrystal growth.
doi_str_mv 10.1116/1.4767813
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1116_1_4767813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_4767813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-a7e42303cab54c43a6efdda99d2e448e30855384c452b93bf5a52be3be2d665a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWKsL_0HAlcLUPOa5lFIfUHCj65DJ3LSRmWRIUmv99aZUdCG4yoUcDpwPoUtKZpTS8pbO8qqsasqP0IQWjGR1UTTHaEIqnmeMEnqKzkJ4I4QwRsoJGhZag4rYaWwsDiZu8HrXebcCi8dehkHi6EHGAWyCLP40VmH3YTrAK--2Fm-CsSvcuy2OMIzgZdx4wDK6wSjcyx143MHoktk4e45OtOwDXHy_U_R6v3iZP2bL54en-d0yU5xVMZMV5IwTrmRb5CrnsgTddbJpOgZ5XgMnqYrX6atgbcNbXch0AG-BdWVZSD5FVwevC9GIoEwEtVbO2pQqUnjTpG0SdX2glHcheNBi9GaQficoEfs1BRXfayb25sDuZXLf8gO_O_8LirHT_8F_zV9cNITi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of in situ hydrogen plasma treatment on zinc oxide grown using low temperature atomic layer deposition</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Jung, Tae-Hoon ; Park, Jin-Seong ; Kim, Dong-Ho ; Jeong, Yongsoo ; Park, Sung-Gyu ; Kwon, Jung-Dae</creator><creatorcontrib>Jung, Tae-Hoon ; Park, Jin-Seong ; Kim, Dong-Ho ; Jeong, Yongsoo ; Park, Sung-Gyu ; Kwon, Jung-Dae</creatorcontrib><description>Zinc oxide (ZnO) films under in situ hydrogen plasma were deposited via atomic layer deposition (ALD) at an extremely low temperature (100 °C). Diethyl zinc ((C2H5)2Zn) and deionized water were used as the zinc and oxygen source, respectively. The growth rate of the ZnO films decreased to 1.26 and 1.06 Å/cycle due to changes in the hydrogen plasma treatment power and exposure time, respectively. The resistivity of the ZnO films decreased to 7.6 × 10−4 Ω cm, even at 100 °C, with a very high carrier concentration (1.4 × 1021 cm−3) due to the increasing oxygen deficiencies in the ZnO films. The carrier mobility was decreased slightly to 8.6 cm2/Vs via grain boundary scattering due to the enhanced polycrystallization. Based on the x-ray diffraction and x-ray photoelectron spectroscopy, the carrier concentration and mobility were strongly correlated to the oxygen deficiency and crystallinity, respectively. In addition, the in situ hydrogen plasma in the ZnO ALD had an important role in sequentially generating oxygen deficiencies and enhancing polycrystal growth.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/1.4767813</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; CARRIER DENSITY ; CARRIER MOBILITY ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTAL GROWTH ; DEPOSITION ; GRAIN BOUNDARIES ; HYDROGEN ; OXYGEN ; PLASMA ; TEMPERATURE RANGE 0065-0273 K ; THIN FILMS ; WATER ; X-RAY DIFFRACTION ; X-RAY PHOTOELECTRON SPECTROSCOPY ; ZINC ; ZINC OXIDES</subject><ispartof>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films, 2013-01, Vol.31 (1)</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-a7e42303cab54c43a6efdda99d2e448e30855384c452b93bf5a52be3be2d665a3</citedby><cites>FETCH-LOGICAL-c327t-a7e42303cab54c43a6efdda99d2e448e30855384c452b93bf5a52be3be2d665a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22099152$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Tae-Hoon</creatorcontrib><creatorcontrib>Park, Jin-Seong</creatorcontrib><creatorcontrib>Kim, Dong-Ho</creatorcontrib><creatorcontrib>Jeong, Yongsoo</creatorcontrib><creatorcontrib>Park, Sung-Gyu</creatorcontrib><creatorcontrib>Kwon, Jung-Dae</creatorcontrib><title>Effect of in situ hydrogen plasma treatment on zinc oxide grown using low temperature atomic layer deposition</title><title>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</title><description>Zinc oxide (ZnO) films under in situ hydrogen plasma were deposited via atomic layer deposition (ALD) at an extremely low temperature (100 °C). Diethyl zinc ((C2H5)2Zn) and deionized water were used as the zinc and oxygen source, respectively. The growth rate of the ZnO films decreased to 1.26 and 1.06 Å/cycle due to changes in the hydrogen plasma treatment power and exposure time, respectively. The resistivity of the ZnO films decreased to 7.6 × 10−4 Ω cm, even at 100 °C, with a very high carrier concentration (1.4 × 1021 cm−3) due to the increasing oxygen deficiencies in the ZnO films. The carrier mobility was decreased slightly to 8.6 cm2/Vs via grain boundary scattering due to the enhanced polycrystallization. Based on the x-ray diffraction and x-ray photoelectron spectroscopy, the carrier concentration and mobility were strongly correlated to the oxygen deficiency and crystallinity, respectively. In addition, the in situ hydrogen plasma in the ZnO ALD had an important role in sequentially generating oxygen deficiencies and enhancing polycrystal growth.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>CARRIER DENSITY</subject><subject>CARRIER MOBILITY</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTAL GROWTH</subject><subject>DEPOSITION</subject><subject>GRAIN BOUNDARIES</subject><subject>HYDROGEN</subject><subject>OXYGEN</subject><subject>PLASMA</subject><subject>TEMPERATURE RANGE 0065-0273 K</subject><subject>THIN FILMS</subject><subject>WATER</subject><subject>X-RAY DIFFRACTION</subject><subject>X-RAY PHOTOELECTRON SPECTROSCOPY</subject><subject>ZINC</subject><subject>ZINC OXIDES</subject><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMoWKsL_0HAlcLUPOa5lFIfUHCj65DJ3LSRmWRIUmv99aZUdCG4yoUcDpwPoUtKZpTS8pbO8qqsasqP0IQWjGR1UTTHaEIqnmeMEnqKzkJ4I4QwRsoJGhZag4rYaWwsDiZu8HrXebcCi8dehkHi6EHGAWyCLP40VmH3YTrAK--2Fm-CsSvcuy2OMIzgZdx4wDK6wSjcyx143MHoktk4e45OtOwDXHy_U_R6v3iZP2bL54en-d0yU5xVMZMV5IwTrmRb5CrnsgTddbJpOgZ5XgMnqYrX6atgbcNbXch0AG-BdWVZSD5FVwevC9GIoEwEtVbO2pQqUnjTpG0SdX2glHcheNBi9GaQficoEfs1BRXfayb25sDuZXLf8gO_O_8LirHT_8F_zV9cNITi</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Jung, Tae-Hoon</creator><creator>Park, Jin-Seong</creator><creator>Kim, Dong-Ho</creator><creator>Jeong, Yongsoo</creator><creator>Park, Sung-Gyu</creator><creator>Kwon, Jung-Dae</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20130101</creationdate><title>Effect of in situ hydrogen plasma treatment on zinc oxide grown using low temperature atomic layer deposition</title><author>Jung, Tae-Hoon ; Park, Jin-Seong ; Kim, Dong-Ho ; Jeong, Yongsoo ; Park, Sung-Gyu ; Kwon, Jung-Dae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-a7e42303cab54c43a6efdda99d2e448e30855384c452b93bf5a52be3be2d665a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>CARRIER DENSITY</topic><topic>CARRIER MOBILITY</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTAL GROWTH</topic><topic>DEPOSITION</topic><topic>GRAIN BOUNDARIES</topic><topic>HYDROGEN</topic><topic>OXYGEN</topic><topic>PLASMA</topic><topic>TEMPERATURE RANGE 0065-0273 K</topic><topic>THIN FILMS</topic><topic>WATER</topic><topic>X-RAY DIFFRACTION</topic><topic>X-RAY PHOTOELECTRON SPECTROSCOPY</topic><topic>ZINC</topic><topic>ZINC OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Tae-Hoon</creatorcontrib><creatorcontrib>Park, Jin-Seong</creatorcontrib><creatorcontrib>Kim, Dong-Ho</creatorcontrib><creatorcontrib>Jeong, Yongsoo</creatorcontrib><creatorcontrib>Park, Sung-Gyu</creatorcontrib><creatorcontrib>Kwon, Jung-Dae</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Tae-Hoon</au><au>Park, Jin-Seong</au><au>Kim, Dong-Ho</au><au>Jeong, Yongsoo</au><au>Park, Sung-Gyu</au><au>Kwon, Jung-Dae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of in situ hydrogen plasma treatment on zinc oxide grown using low temperature atomic layer deposition</atitle><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>31</volume><issue>1</issue><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>Zinc oxide (ZnO) films under in situ hydrogen plasma were deposited via atomic layer deposition (ALD) at an extremely low temperature (100 °C). Diethyl zinc ((C2H5)2Zn) and deionized water were used as the zinc and oxygen source, respectively. The growth rate of the ZnO films decreased to 1.26 and 1.06 Å/cycle due to changes in the hydrogen plasma treatment power and exposure time, respectively. The resistivity of the ZnO films decreased to 7.6 × 10−4 Ω cm, even at 100 °C, with a very high carrier concentration (1.4 × 1021 cm−3) due to the increasing oxygen deficiencies in the ZnO films. The carrier mobility was decreased slightly to 8.6 cm2/Vs via grain boundary scattering due to the enhanced polycrystallization. Based on the x-ray diffraction and x-ray photoelectron spectroscopy, the carrier concentration and mobility were strongly correlated to the oxygen deficiency and crystallinity, respectively. In addition, the in situ hydrogen plasma in the ZnO ALD had an important role in sequentially generating oxygen deficiencies and enhancing polycrystal growth.</abstract><cop>United States</cop><doi>10.1116/1.4767813</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2013-01, Vol.31 (1)
issn 0734-2101
1520-8559
language eng
recordid cdi_scitation_primary_10_1116_1_4767813
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
CARRIER DENSITY
CARRIER MOBILITY
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CRYSTAL GROWTH
DEPOSITION
GRAIN BOUNDARIES
HYDROGEN
OXYGEN
PLASMA
TEMPERATURE RANGE 0065-0273 K
THIN FILMS
WATER
X-RAY DIFFRACTION
X-RAY PHOTOELECTRON SPECTROSCOPY
ZINC
ZINC OXIDES
title Effect of in situ hydrogen plasma treatment on zinc oxide grown using low temperature atomic layer deposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20in%20situ%20hydrogen%20plasma%20treatment%20on%20zinc%20oxide%20grown%20using%20low%20temperature%20atomic%20layer%20deposition&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=Jung,%20Tae-Hoon&rft.date=2013-01-01&rft.volume=31&rft.issue=1&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/1.4767813&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_4767813%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-a7e42303cab54c43a6efdda99d2e448e30855384c452b93bf5a52be3be2d665a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true