Loading…

III-V semiconductor extended short-wave infrared detectors

The extended-shortwave infrared wavelength range, encompassing wavelengths from 2.2 to 3 μm, is significantly underdeveloped when compared to the shortwave and midwave infrared bands. Achieving high performance detectors in the extended-shortwave range is desirable; however, it is unclear whether to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vacuum science and technology. B, Nanotechnology & microelectronics Nanotechnology & microelectronics, 2017-03, Vol.35 (2)
Main Authors: Savich, Gregory R., Sidor, Daniel E., Du, Xiaoyu, Wicks, Gary W., Debnath, Mukul C., Mishima, Tetsuya D., Santos, Michael B., Golding, Terry D., Jain, Manish, Craig, Adam P., Marshall, Andrew R. J.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c365t-e033c5c1eb2b40d899749afa0991ec83cd5052da9ef562dc7306589d423828953
cites cdi_FETCH-LOGICAL-c365t-e033c5c1eb2b40d899749afa0991ec83cd5052da9ef562dc7306589d423828953
container_end_page
container_issue 2
container_start_page
container_title Journal of vacuum science and technology. B, Nanotechnology & microelectronics
container_volume 35
creator Savich, Gregory R.
Sidor, Daniel E.
Du, Xiaoyu
Wicks, Gary W.
Debnath, Mukul C.
Mishima, Tetsuya D.
Santos, Michael B.
Golding, Terry D.
Jain, Manish
Craig, Adam P.
Marshall, Andrew R. J.
description The extended-shortwave infrared wavelength range, encompassing wavelengths from 2.2 to 3 μm, is significantly underdeveloped when compared to the shortwave and midwave infrared bands. Achieving high performance detectors in the extended-shortwave range is desirable; however, it is unclear whether to approach the wavelength range via the detector structures and materials common to the shortwave regime or those common to the midwave regime. Both approaches are studied here. Electrical and optical characteristics of conventional photodiodes and nBn architecture detectors with 2.8 μm cutoff wavelengths are analyzed for detectors with both lattice-mismatched InGaAs and lattice-matched InGaAsSb absorbing regions. Regardless of the absorber material, the nBn detectors show nearly 3 orders of magnitude improvements in performance over the conventional photodiode architecture, and the lattice-matched InGaAsSb nBn exhibits a further reduction in the dark current by more than an order of magnitude when compared to the lattice-mismatched InGaAs nBn. The InGaAsSb nBn exhibits high quality optical detection resulting in a high performance detector in the extended-shortwave infrared band.
doi_str_mv 10.1116/1.4975340
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1116_1_4975340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_4975340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-e033c5c1eb2b40d899749afa0991ec83cd5052da9ef562dc7306589d423828953</originalsourceid><addsrcrecordid>eNqdz01LAzEQBuAgCpbag_9grwqp-d7EmxQ_Fgpe1GtIkwmu2E1JYtV_75YWvTuXGV4eBl6EzimZU0rVFZ0L00ouyBGaMKoUZq0Ux7-3UKdoVsobGUdpSTiZoOuu6_BLU2Dd-zSED19TbuCrwhAgNOU15Yo_3RaafojZ5TELUGGnyhk6ie69wOywp-j57vZp8YCXj_fd4maJPVeyYiCce-kprNhKkKCNaYVx0RFjKHjNfZBEsuAMRKlY8C0nSmoTBOOaaSP5FF3s__qcSskQ7Sb3a5e_LSV219tSe-g92su9Lb6vrvZp-B_epvwH7SZE_gMa8GVL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>III-V semiconductor extended short-wave infrared detectors</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Savich, Gregory R. ; Sidor, Daniel E. ; Du, Xiaoyu ; Wicks, Gary W. ; Debnath, Mukul C. ; Mishima, Tetsuya D. ; Santos, Michael B. ; Golding, Terry D. ; Jain, Manish ; Craig, Adam P. ; Marshall, Andrew R. J.</creator><creatorcontrib>Savich, Gregory R. ; Sidor, Daniel E. ; Du, Xiaoyu ; Wicks, Gary W. ; Debnath, Mukul C. ; Mishima, Tetsuya D. ; Santos, Michael B. ; Golding, Terry D. ; Jain, Manish ; Craig, Adam P. ; Marshall, Andrew R. J.</creatorcontrib><description>The extended-shortwave infrared wavelength range, encompassing wavelengths from 2.2 to 3 μm, is significantly underdeveloped when compared to the shortwave and midwave infrared bands. Achieving high performance detectors in the extended-shortwave range is desirable; however, it is unclear whether to approach the wavelength range via the detector structures and materials common to the shortwave regime or those common to the midwave regime. Both approaches are studied here. Electrical and optical characteristics of conventional photodiodes and nBn architecture detectors with 2.8 μm cutoff wavelengths are analyzed for detectors with both lattice-mismatched InGaAs and lattice-matched InGaAsSb absorbing regions. Regardless of the absorber material, the nBn detectors show nearly 3 orders of magnitude improvements in performance over the conventional photodiode architecture, and the lattice-matched InGaAsSb nBn exhibits a further reduction in the dark current by more than an order of magnitude when compared to the lattice-mismatched InGaAs nBn. The InGaAsSb nBn exhibits high quality optical detection resulting in a high performance detector in the extended-shortwave infrared band.</description><identifier>ISSN: 2166-2746</identifier><identifier>EISSN: 2166-2754</identifier><identifier>DOI: 10.1116/1.4975340</identifier><identifier>CODEN: JVTBD9</identifier><language>eng</language><ispartof>Journal of vacuum science and technology. B, Nanotechnology &amp; microelectronics, 2017-03, Vol.35 (2)</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-e033c5c1eb2b40d899749afa0991ec83cd5052da9ef562dc7306589d423828953</citedby><cites>FETCH-LOGICAL-c365t-e033c5c1eb2b40d899749afa0991ec83cd5052da9ef562dc7306589d423828953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Savich, Gregory R.</creatorcontrib><creatorcontrib>Sidor, Daniel E.</creatorcontrib><creatorcontrib>Du, Xiaoyu</creatorcontrib><creatorcontrib>Wicks, Gary W.</creatorcontrib><creatorcontrib>Debnath, Mukul C.</creatorcontrib><creatorcontrib>Mishima, Tetsuya D.</creatorcontrib><creatorcontrib>Santos, Michael B.</creatorcontrib><creatorcontrib>Golding, Terry D.</creatorcontrib><creatorcontrib>Jain, Manish</creatorcontrib><creatorcontrib>Craig, Adam P.</creatorcontrib><creatorcontrib>Marshall, Andrew R. J.</creatorcontrib><title>III-V semiconductor extended short-wave infrared detectors</title><title>Journal of vacuum science and technology. B, Nanotechnology &amp; microelectronics</title><description>The extended-shortwave infrared wavelength range, encompassing wavelengths from 2.2 to 3 μm, is significantly underdeveloped when compared to the shortwave and midwave infrared bands. Achieving high performance detectors in the extended-shortwave range is desirable; however, it is unclear whether to approach the wavelength range via the detector structures and materials common to the shortwave regime or those common to the midwave regime. Both approaches are studied here. Electrical and optical characteristics of conventional photodiodes and nBn architecture detectors with 2.8 μm cutoff wavelengths are analyzed for detectors with both lattice-mismatched InGaAs and lattice-matched InGaAsSb absorbing regions. Regardless of the absorber material, the nBn detectors show nearly 3 orders of magnitude improvements in performance over the conventional photodiode architecture, and the lattice-matched InGaAsSb nBn exhibits a further reduction in the dark current by more than an order of magnitude when compared to the lattice-mismatched InGaAs nBn. The InGaAsSb nBn exhibits high quality optical detection resulting in a high performance detector in the extended-shortwave infrared band.</description><issn>2166-2746</issn><issn>2166-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqdz01LAzEQBuAgCpbag_9grwqp-d7EmxQ_Fgpe1GtIkwmu2E1JYtV_75YWvTuXGV4eBl6EzimZU0rVFZ0L00ouyBGaMKoUZq0Ux7-3UKdoVsobGUdpSTiZoOuu6_BLU2Dd-zSED19TbuCrwhAgNOU15Yo_3RaafojZ5TELUGGnyhk6ie69wOywp-j57vZp8YCXj_fd4maJPVeyYiCce-kprNhKkKCNaYVx0RFjKHjNfZBEsuAMRKlY8C0nSmoTBOOaaSP5FF3s__qcSskQ7Sb3a5e_LSV219tSe-g92su9Lb6vrvZp-B_epvwH7SZE_gMa8GVL</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Savich, Gregory R.</creator><creator>Sidor, Daniel E.</creator><creator>Du, Xiaoyu</creator><creator>Wicks, Gary W.</creator><creator>Debnath, Mukul C.</creator><creator>Mishima, Tetsuya D.</creator><creator>Santos, Michael B.</creator><creator>Golding, Terry D.</creator><creator>Jain, Manish</creator><creator>Craig, Adam P.</creator><creator>Marshall, Andrew R. J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>III-V semiconductor extended short-wave infrared detectors</title><author>Savich, Gregory R. ; Sidor, Daniel E. ; Du, Xiaoyu ; Wicks, Gary W. ; Debnath, Mukul C. ; Mishima, Tetsuya D. ; Santos, Michael B. ; Golding, Terry D. ; Jain, Manish ; Craig, Adam P. ; Marshall, Andrew R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-e033c5c1eb2b40d899749afa0991ec83cd5052da9ef562dc7306589d423828953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savich, Gregory R.</creatorcontrib><creatorcontrib>Sidor, Daniel E.</creatorcontrib><creatorcontrib>Du, Xiaoyu</creatorcontrib><creatorcontrib>Wicks, Gary W.</creatorcontrib><creatorcontrib>Debnath, Mukul C.</creatorcontrib><creatorcontrib>Mishima, Tetsuya D.</creatorcontrib><creatorcontrib>Santos, Michael B.</creatorcontrib><creatorcontrib>Golding, Terry D.</creatorcontrib><creatorcontrib>Jain, Manish</creatorcontrib><creatorcontrib>Craig, Adam P.</creatorcontrib><creatorcontrib>Marshall, Andrew R. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vacuum science and technology. B, Nanotechnology &amp; microelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savich, Gregory R.</au><au>Sidor, Daniel E.</au><au>Du, Xiaoyu</au><au>Wicks, Gary W.</au><au>Debnath, Mukul C.</au><au>Mishima, Tetsuya D.</au><au>Santos, Michael B.</au><au>Golding, Terry D.</au><au>Jain, Manish</au><au>Craig, Adam P.</au><au>Marshall, Andrew R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>III-V semiconductor extended short-wave infrared detectors</atitle><jtitle>Journal of vacuum science and technology. B, Nanotechnology &amp; microelectronics</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>35</volume><issue>2</issue><issn>2166-2746</issn><eissn>2166-2754</eissn><coden>JVTBD9</coden><abstract>The extended-shortwave infrared wavelength range, encompassing wavelengths from 2.2 to 3 μm, is significantly underdeveloped when compared to the shortwave and midwave infrared bands. Achieving high performance detectors in the extended-shortwave range is desirable; however, it is unclear whether to approach the wavelength range via the detector structures and materials common to the shortwave regime or those common to the midwave regime. Both approaches are studied here. Electrical and optical characteristics of conventional photodiodes and nBn architecture detectors with 2.8 μm cutoff wavelengths are analyzed for detectors with both lattice-mismatched InGaAs and lattice-matched InGaAsSb absorbing regions. Regardless of the absorber material, the nBn detectors show nearly 3 orders of magnitude improvements in performance over the conventional photodiode architecture, and the lattice-matched InGaAsSb nBn exhibits a further reduction in the dark current by more than an order of magnitude when compared to the lattice-mismatched InGaAs nBn. The InGaAsSb nBn exhibits high quality optical detection resulting in a high performance detector in the extended-shortwave infrared band.</abstract><doi>10.1116/1.4975340</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2166-2746
ispartof Journal of vacuum science and technology. B, Nanotechnology & microelectronics, 2017-03, Vol.35 (2)
issn 2166-2746
2166-2754
language eng
recordid cdi_scitation_primary_10_1116_1_4975340
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title III-V semiconductor extended short-wave infrared detectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=III-V%20semiconductor%20extended%20short-wave%20infrared%20detectors&rft.jtitle=Journal%20of%20vacuum%20science%20and%20technology.%20B,%20Nanotechnology%20&%20microelectronics&rft.au=Savich,%20Gregory%20R.&rft.date=2017-03-01&rft.volume=35&rft.issue=2&rft.issn=2166-2746&rft.eissn=2166-2754&rft.coden=JVTBD9&rft_id=info:doi/10.1116/1.4975340&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_4975340%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-e033c5c1eb2b40d899749afa0991ec83cd5052da9ef562dc7306589d423828953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true