Loading…

Exploring the fabrication of Co and Mn nanostructures with focused soft x-ray beam induced deposition

Focused soft X-ray beam induced deposition of metallic deposits from metal organic precursors is a promising novel technique for additive nanostructure fabrication. In the present work, the authors present a comparative study for deposition and in situ characterization of Co and Mn nanostructures in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vacuum science and technology. B, Nanotechnology & microelectronics Nanotechnology & microelectronics, 2017-05, Vol.35 (3)
Main Authors: Tu, Fan, Späth, Andreas, Drost, Martin, Vollnhals, Florian, Krick Calderon, Sandra, Fink, Rainer H., Marbach, Hubertus
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Focused soft X-ray beam induced deposition of metallic deposits from metal organic precursors is a promising novel technique for additive nanostructure fabrication. In the present work, the authors present a comparative study for deposition and in situ characterization of Co and Mn nanostructures in a scanning transmission x-ray microscope. The authors detect a significant selectivity of the deposition process with respect to the incident photon energy that arises from the enhanced x-ray absorption cross section of the precursor molecules for near-threshold excitation. This effect has been investigated for the L 2,3-edges of the respective metal centers of two different precursor molecules as well as the N and O K-edges of the respective ligands. The authors find a photon-limited growth mode for deposition from cobalt tricarbonyl nitrosyl [Co(CO)3NO], while the process is precursor-limited for methylcyclopentadienyl manganese tricarbonyl [MeCpMn(CO)3] possibly due to a comparably low vapor pressure of the latter precursor.
ISSN:2166-2746
2166-2754
DOI:10.1116/1.4979274