Loading…
Area selective deposition of TiO2 by intercalation of plasma etching cycles in PEALD process: A bottom up approach for the simplification of 3D integration scheme
A selective deposition process for bottom-up approach was developed in a modified plasma enhanced atomic layer deposition (PEALD) sequence. As a case study, a very standard PEALD TiO2 using organo-amine precursor and O2 plasma is chosen. The metal oxide selectivity is obtained on TiN versus Si-based...
Saved in:
Published in: | Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2019-03, Vol.37 (2) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A selective deposition process for bottom-up approach was developed in a modified plasma
enhanced atomic layer deposition (PEALD) sequence. As a case study, a very standard PEALD
TiO2 using organo-amine precursor and O2 plasma is chosen. The
metal oxide selectivity is obtained on TiN versus Si-based surfaces by adding one
etching/passivation plasma step of fluorine every n cycles in a PEALD-TiO2
process. Fluorine gas NF3 allows (1) to etch the TiO2 layer on Si,
SiO2, or SiN surface while keeping few nanometers of TiO2 on the
TiN substrate and (2) to increase the incubation time on the Si-based surface.
Quasi-in situ XPS measurements were used to study the incubation time
between Si/SiO2 substrates versus TiN substrate. Results show that Si–F bonds
are formed on Si and lock the surface reactions. The effectiveness of this atomic layer
selective deposition method was successfully tested on a 3D patterned substrate with the
metal oxide deposited only at the edge of metal lines. |
---|---|
ISSN: | 0734-2101 1520-8559 |
DOI: | 10.1116/1.5049361 |