Loading…

Broadband UV-assisted thermal annealing of low-k silicon carbonitride films using a C-rich silazane precursor

Low-k dielectric silicon carbonitride (SiCxNy) films are deposited by plasma-enhanced chemical vapor deposition using a carbon-rich silazane precursor, N-methyl-aza-2,2,4-trimethylsilacyclopentane (SiC7NH17), at 100 °C. The post-treatments of SiCxNy films are carried out by thermal annealing and a b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vacuum science and technology. B, Nanotechnology & microelectronics Nanotechnology & microelectronics, 2018-11, Vol.36 (6)
Main Authors: Chang, Wei-Yuan, Chung, Hau-Ting, Chen, Yi-Chang, Leu, Jihperng
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Low-k dielectric silicon carbonitride (SiCxNy) films are deposited by plasma-enhanced chemical vapor deposition using a carbon-rich silazane precursor, N-methyl-aza-2,2,4-trimethylsilacyclopentane (SiC7NH17), at 100 °C. The post-treatments of SiCxNy films are carried out by thermal annealing and a broadband UV-assisted thermal annealing (UV-annealing) at 400 °C for 5 min. Compared to the thermal annealing treatment, UV-annealing can improve both dielectric and mechanical properties of low-k SiCxNy films. Under thermal annealing, SiCxNy films show great thermal stability, but little structural change. In contrast, upon UV-annealing, most of the Si–H and N–H bonds are broken up, which induces more Si–N cross-linking and converts Si–C matrix into Si–N matrix. The ethylene bridges in Si–(CH2)2–Si also remain intact, but the unbridged hydrocarbons in Si–(CH2)2–N and Si–CH2–CH3 bonds decompose completely during the UV-annealing process. These account for the reduced dielectric constant to k = 3.2 from 3.6 and a 21% enhancement of Young's modulus to 7.4 GPa in the SiCxNy films after UV-annealing. Broadband UV-annealing shows promise as a post-treatment method for enhancing the properties of low-k dielectric barrier, SiCxNy films.
ISSN:2166-2746
2166-2754
DOI:10.1116/1.5063294