Loading…

Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy

Thin film perovskite-type oxide SrTiO 3 has been grown epitaxially on Si(001) substrate by molecular beam epitaxy. Reflection high energy electron diffraction and x-ray diffraction analysis indicate high quality SrTiO 3 heteroepitaxy on Si substrate with SrTiO 3 (001)//Si(001) and SrTiO 3 [010]//Si[...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2000-05, Vol.18 (3), p.1653-1657
Main Authors: Yu, Z., Ramdani, J., Curless, J. A., Finder, J. M., Overgaard, C. D., Droopad, R., Eisenbeiser, K. W., Hallmark, J. A., Ooms, W. J., Conner, J. R., Kaushik, V. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-ca112ded75d01d5d3e24c06b405ea88fd97c3c2cb5f65561a551ecb40a11ba433
cites cdi_FETCH-LOGICAL-c325t-ca112ded75d01d5d3e24c06b405ea88fd97c3c2cb5f65561a551ecb40a11ba433
container_end_page 1657
container_issue 3
container_start_page 1653
container_title Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures
container_volume 18
creator Yu, Z.
Ramdani, J.
Curless, J. A.
Finder, J. M.
Overgaard, C. D.
Droopad, R.
Eisenbeiser, K. W.
Hallmark, J. A.
Ooms, W. J.
Conner, J. R.
Kaushik, V. S.
description Thin film perovskite-type oxide SrTiO 3 has been grown epitaxially on Si(001) substrate by molecular beam epitaxy. Reflection high energy electron diffraction and x-ray diffraction analysis indicate high quality SrTiO 3 heteroepitaxy on Si substrate with SrTiO 3 (001)//Si(001) and SrTiO 3 [010]//Si[110] . The SrTiO 3 surface is atomically as smooth as the starting substrate surface, with a root mean square roughness of 1.2 Å observed by atomic force microscopy. The thickness of the amorphous interfacial layer between SrTiO 3 and Si has been engineered to minimize the device short channel effect. An effective oxide thickness
doi_str_mv 10.1116/1.591445
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1116_1_591445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745648227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ca112ded75d01d5d3e24c06b405ea88fd97c3c2cb5f65561a551ecb40a11ba433</originalsourceid><addsrcrecordid>eNqd0E1OwzAQBWALgUQpSBzBO2CR4rE9SbtEFb-qxAYkdpbjOGBw4mCnhd6eQBAHYDWL-eZJ8wg5BjYDgPwcZrgAKXGHTAA5y-aYF7tkwgohMw7wtE8OUnpljOUoxITcXXau159Oe9rZGDbpzfWW9i-upbXzTaLPMXy0NLQ0Oe_MMMstbYK3Zu11pKXVDbU_EdtDsldrn-zR75ySx6vLh-VNtrq_vl1erDIjOPaZ0QC8slWBFYMKK2G5NCwvJUOr5_O6WhRGGG5KrHPEHDQiWDOsh7tSSyGm5GTM7WJ4X9vUq8YlY73XrQ3rpAqJuZxzXgzydJQmhpSirVUXXaPjVgFT320pUGNbAz0baTLDM70L7b_sJsQ_p7qqFl-YYXiv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745648227</pqid></control><display><type>article</type><title>Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Yu, Z. ; Ramdani, J. ; Curless, J. A. ; Finder, J. M. ; Overgaard, C. D. ; Droopad, R. ; Eisenbeiser, K. W. ; Hallmark, J. A. ; Ooms, W. J. ; Conner, J. R. ; Kaushik, V. S.</creator><creatorcontrib>Yu, Z. ; Ramdani, J. ; Curless, J. A. ; Finder, J. M. ; Overgaard, C. D. ; Droopad, R. ; Eisenbeiser, K. W. ; Hallmark, J. A. ; Ooms, W. J. ; Conner, J. R. ; Kaushik, V. S.</creatorcontrib><description>Thin film perovskite-type oxide SrTiO 3 has been grown epitaxially on Si(001) substrate by molecular beam epitaxy. Reflection high energy electron diffraction and x-ray diffraction analysis indicate high quality SrTiO 3 heteroepitaxy on Si substrate with SrTiO 3 (001)//Si(001) and SrTiO 3 [010]//Si[110] . The SrTiO 3 surface is atomically as smooth as the starting substrate surface, with a root mean square roughness of 1.2 Å observed by atomic force microscopy. The thickness of the amorphous interfacial layer between SrTiO 3 and Si has been engineered to minimize the device short channel effect. An effective oxide thickness &lt;10 Å has been obtained for a 110 Å thick dielectric film. The interface state density between SrTiO 3 and Si is 6.4×10 10   cm −2  eV −1 , and the inversion layer carrier mobilities are 221 and 62 cm2 V−1 s−1 for n- and p-channel metal–oxide–semiconductor devices with 1.2 μm effective channel length, respectively. The gate leakage in these devices is two orders of magnitude smaller than a comparable SiO 2 gate dielectric metal–oxide–semiconductor field effect transistors.</description><identifier>ISSN: 0734-211X</identifier><identifier>ISSN: 1071-1023</identifier><identifier>EISSN: 1520-8567</identifier><identifier>DOI: 10.1116/1.591445</identifier><identifier>CODEN: JVTBD9</identifier><language>eng</language><subject>Dielectric properties ; Gates (transistor) ; Leakage currents ; Molecular beam epitaxy ; Perovskite ; Reflection high energy electron diffraction ; Strontium compounds ; Surface roughness ; Thin film transistors ; X ray crystallography</subject><ispartof>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures, 2000-05, Vol.18 (3), p.1653-1657</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-ca112ded75d01d5d3e24c06b405ea88fd97c3c2cb5f65561a551ecb40a11ba433</citedby><cites>FETCH-LOGICAL-c325t-ca112ded75d01d5d3e24c06b405ea88fd97c3c2cb5f65561a551ecb40a11ba433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><creatorcontrib>Yu, Z.</creatorcontrib><creatorcontrib>Ramdani, J.</creatorcontrib><creatorcontrib>Curless, J. A.</creatorcontrib><creatorcontrib>Finder, J. M.</creatorcontrib><creatorcontrib>Overgaard, C. D.</creatorcontrib><creatorcontrib>Droopad, R.</creatorcontrib><creatorcontrib>Eisenbeiser, K. W.</creatorcontrib><creatorcontrib>Hallmark, J. A.</creatorcontrib><creatorcontrib>Ooms, W. J.</creatorcontrib><creatorcontrib>Conner, J. R.</creatorcontrib><creatorcontrib>Kaushik, V. S.</creatorcontrib><title>Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy</title><title>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</title><description>Thin film perovskite-type oxide SrTiO 3 has been grown epitaxially on Si(001) substrate by molecular beam epitaxy. Reflection high energy electron diffraction and x-ray diffraction analysis indicate high quality SrTiO 3 heteroepitaxy on Si substrate with SrTiO 3 (001)//Si(001) and SrTiO 3 [010]//Si[110] . The SrTiO 3 surface is atomically as smooth as the starting substrate surface, with a root mean square roughness of 1.2 Å observed by atomic force microscopy. The thickness of the amorphous interfacial layer between SrTiO 3 and Si has been engineered to minimize the device short channel effect. An effective oxide thickness &lt;10 Å has been obtained for a 110 Å thick dielectric film. The interface state density between SrTiO 3 and Si is 6.4×10 10   cm −2  eV −1 , and the inversion layer carrier mobilities are 221 and 62 cm2 V−1 s−1 for n- and p-channel metal–oxide–semiconductor devices with 1.2 μm effective channel length, respectively. The gate leakage in these devices is two orders of magnitude smaller than a comparable SiO 2 gate dielectric metal–oxide–semiconductor field effect transistors.</description><subject>Dielectric properties</subject><subject>Gates (transistor)</subject><subject>Leakage currents</subject><subject>Molecular beam epitaxy</subject><subject>Perovskite</subject><subject>Reflection high energy electron diffraction</subject><subject>Strontium compounds</subject><subject>Surface roughness</subject><subject>Thin film transistors</subject><subject>X ray crystallography</subject><issn>0734-211X</issn><issn>1071-1023</issn><issn>1520-8567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqd0E1OwzAQBWALgUQpSBzBO2CR4rE9SbtEFb-qxAYkdpbjOGBw4mCnhd6eQBAHYDWL-eZJ8wg5BjYDgPwcZrgAKXGHTAA5y-aYF7tkwgohMw7wtE8OUnpljOUoxITcXXau159Oe9rZGDbpzfWW9i-upbXzTaLPMXy0NLQ0Oe_MMMstbYK3Zu11pKXVDbU_EdtDsldrn-zR75ySx6vLh-VNtrq_vl1erDIjOPaZ0QC8slWBFYMKK2G5NCwvJUOr5_O6WhRGGG5KrHPEHDQiWDOsh7tSSyGm5GTM7WJ4X9vUq8YlY73XrQ3rpAqJuZxzXgzydJQmhpSirVUXXaPjVgFT320pUGNbAz0baTLDM70L7b_sJsQ_p7qqFl-YYXiv</recordid><startdate>200005</startdate><enddate>200005</enddate><creator>Yu, Z.</creator><creator>Ramdani, J.</creator><creator>Curless, J. A.</creator><creator>Finder, J. M.</creator><creator>Overgaard, C. D.</creator><creator>Droopad, R.</creator><creator>Eisenbeiser, K. W.</creator><creator>Hallmark, J. A.</creator><creator>Ooms, W. J.</creator><creator>Conner, J. R.</creator><creator>Kaushik, V. S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>200005</creationdate><title>Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy</title><author>Yu, Z. ; Ramdani, J. ; Curless, J. A. ; Finder, J. M. ; Overgaard, C. D. ; Droopad, R. ; Eisenbeiser, K. W. ; Hallmark, J. A. ; Ooms, W. J. ; Conner, J. R. ; Kaushik, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ca112ded75d01d5d3e24c06b405ea88fd97c3c2cb5f65561a551ecb40a11ba433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Dielectric properties</topic><topic>Gates (transistor)</topic><topic>Leakage currents</topic><topic>Molecular beam epitaxy</topic><topic>Perovskite</topic><topic>Reflection high energy electron diffraction</topic><topic>Strontium compounds</topic><topic>Surface roughness</topic><topic>Thin film transistors</topic><topic>X ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Z.</creatorcontrib><creatorcontrib>Ramdani, J.</creatorcontrib><creatorcontrib>Curless, J. A.</creatorcontrib><creatorcontrib>Finder, J. M.</creatorcontrib><creatorcontrib>Overgaard, C. D.</creatorcontrib><creatorcontrib>Droopad, R.</creatorcontrib><creatorcontrib>Eisenbeiser, K. W.</creatorcontrib><creatorcontrib>Hallmark, J. A.</creatorcontrib><creatorcontrib>Ooms, W. J.</creatorcontrib><creatorcontrib>Conner, J. R.</creatorcontrib><creatorcontrib>Kaushik, V. S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Z.</au><au>Ramdani, J.</au><au>Curless, J. A.</au><au>Finder, J. M.</au><au>Overgaard, C. D.</au><au>Droopad, R.</au><au>Eisenbeiser, K. W.</au><au>Hallmark, J. A.</au><au>Ooms, W. J.</au><au>Conner, J. R.</au><au>Kaushik, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy</atitle><jtitle>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</jtitle><date>2000-05</date><risdate>2000</risdate><volume>18</volume><issue>3</issue><spage>1653</spage><epage>1657</epage><pages>1653-1657</pages><issn>0734-211X</issn><issn>1071-1023</issn><eissn>1520-8567</eissn><coden>JVTBD9</coden><abstract>Thin film perovskite-type oxide SrTiO 3 has been grown epitaxially on Si(001) substrate by molecular beam epitaxy. Reflection high energy electron diffraction and x-ray diffraction analysis indicate high quality SrTiO 3 heteroepitaxy on Si substrate with SrTiO 3 (001)//Si(001) and SrTiO 3 [010]//Si[110] . The SrTiO 3 surface is atomically as smooth as the starting substrate surface, with a root mean square roughness of 1.2 Å observed by atomic force microscopy. The thickness of the amorphous interfacial layer between SrTiO 3 and Si has been engineered to minimize the device short channel effect. An effective oxide thickness &lt;10 Å has been obtained for a 110 Å thick dielectric film. The interface state density between SrTiO 3 and Si is 6.4×10 10   cm −2  eV −1 , and the inversion layer carrier mobilities are 221 and 62 cm2 V−1 s−1 for n- and p-channel metal–oxide–semiconductor devices with 1.2 μm effective channel length, respectively. The gate leakage in these devices is two orders of magnitude smaller than a comparable SiO 2 gate dielectric metal–oxide–semiconductor field effect transistors.</abstract><doi>10.1116/1.591445</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-211X
ispartof Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2000-05, Vol.18 (3), p.1653-1657
issn 0734-211X
1071-1023
1520-8567
language eng
recordid cdi_scitation_primary_10_1116_1_591445
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Dielectric properties
Gates (transistor)
Leakage currents
Molecular beam epitaxy
Perovskite
Reflection high energy electron diffraction
Strontium compounds
Surface roughness
Thin film transistors
X ray crystallography
title Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20perovskite%20thin%20films%20grown%20on%20silicon%20by%20molecular%20beam%20epitaxy&rft.jtitle=Journal%20of%20Vacuum%20Science%20&%20Technology%20B:%20Microelectronics%20and%20Nanometer%20Structures&rft.au=Yu,%20Z.&rft.date=2000-05&rft.volume=18&rft.issue=3&rft.spage=1653&rft.epage=1657&rft.pages=1653-1657&rft.issn=0734-211X&rft.eissn=1520-8567&rft.coden=JVTBD9&rft_id=info:doi/10.1116/1.591445&rft_dat=%3Cproquest_scita%3E745648227%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-ca112ded75d01d5d3e24c06b405ea88fd97c3c2cb5f65561a551ecb40a11ba433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=745648227&rft_id=info:pmid/&rfr_iscdi=true