Loading…
Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy
Thin film perovskite-type oxide SrTiO 3 has been grown epitaxially on Si(001) substrate by molecular beam epitaxy. Reflection high energy electron diffraction and x-ray diffraction analysis indicate high quality SrTiO 3 heteroepitaxy on Si substrate with SrTiO 3 (001)//Si(001) and SrTiO 3 [010]//Si[...
Saved in:
Published in: | Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2000-05, Vol.18 (3), p.1653-1657 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-ca112ded75d01d5d3e24c06b405ea88fd97c3c2cb5f65561a551ecb40a11ba433 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-ca112ded75d01d5d3e24c06b405ea88fd97c3c2cb5f65561a551ecb40a11ba433 |
container_end_page | 1657 |
container_issue | 3 |
container_start_page | 1653 |
container_title | Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures |
container_volume | 18 |
creator | Yu, Z. Ramdani, J. Curless, J. A. Finder, J. M. Overgaard, C. D. Droopad, R. Eisenbeiser, K. W. Hallmark, J. A. Ooms, W. J. Conner, J. R. Kaushik, V. S. |
description | Thin film perovskite-type oxide
SrTiO
3
has been grown epitaxially on Si(001) substrate by molecular beam epitaxy. Reflection high energy electron diffraction and x-ray diffraction analysis indicate high quality
SrTiO
3
heteroepitaxy on Si substrate with
SrTiO
3
(001)//Si(001)
and
SrTiO
3
[010]//Si[110]
.
The
SrTiO
3
surface is atomically as smooth as the starting substrate surface, with a root mean square roughness of 1.2 Å observed by atomic force microscopy. The thickness of the amorphous interfacial layer between
SrTiO
3
and Si has been engineered to minimize the device short channel effect. An effective oxide thickness |
doi_str_mv | 10.1116/1.591445 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1116_1_591445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745648227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ca112ded75d01d5d3e24c06b405ea88fd97c3c2cb5f65561a551ecb40a11ba433</originalsourceid><addsrcrecordid>eNqd0E1OwzAQBWALgUQpSBzBO2CR4rE9SbtEFb-qxAYkdpbjOGBw4mCnhd6eQBAHYDWL-eZJ8wg5BjYDgPwcZrgAKXGHTAA5y-aYF7tkwgohMw7wtE8OUnpljOUoxITcXXau159Oe9rZGDbpzfWW9i-upbXzTaLPMXy0NLQ0Oe_MMMstbYK3Zu11pKXVDbU_EdtDsldrn-zR75ySx6vLh-VNtrq_vl1erDIjOPaZ0QC8slWBFYMKK2G5NCwvJUOr5_O6WhRGGG5KrHPEHDQiWDOsh7tSSyGm5GTM7WJ4X9vUq8YlY73XrQ3rpAqJuZxzXgzydJQmhpSirVUXXaPjVgFT320pUGNbAz0baTLDM70L7b_sJsQ_p7qqFl-YYXiv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745648227</pqid></control><display><type>article</type><title>Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Yu, Z. ; Ramdani, J. ; Curless, J. A. ; Finder, J. M. ; Overgaard, C. D. ; Droopad, R. ; Eisenbeiser, K. W. ; Hallmark, J. A. ; Ooms, W. J. ; Conner, J. R. ; Kaushik, V. S.</creator><creatorcontrib>Yu, Z. ; Ramdani, J. ; Curless, J. A. ; Finder, J. M. ; Overgaard, C. D. ; Droopad, R. ; Eisenbeiser, K. W. ; Hallmark, J. A. ; Ooms, W. J. ; Conner, J. R. ; Kaushik, V. S.</creatorcontrib><description>Thin film perovskite-type oxide
SrTiO
3
has been grown epitaxially on Si(001) substrate by molecular beam epitaxy. Reflection high energy electron diffraction and x-ray diffraction analysis indicate high quality
SrTiO
3
heteroepitaxy on Si substrate with
SrTiO
3
(001)//Si(001)
and
SrTiO
3
[010]//Si[110]
.
The
SrTiO
3
surface is atomically as smooth as the starting substrate surface, with a root mean square roughness of 1.2 Å observed by atomic force microscopy. The thickness of the amorphous interfacial layer between
SrTiO
3
and Si has been engineered to minimize the device short channel effect. An effective oxide thickness <10 Å has been obtained for a 110 Å thick dielectric film. The interface state density between
SrTiO
3
and Si is
6.4×10
10
cm
−2
eV
−1
,
and the inversion layer carrier mobilities are 221 and 62 cm2 V−1 s−1 for n- and p-channel metal–oxide–semiconductor devices with 1.2 μm effective channel length, respectively. The gate leakage in these devices is two orders of magnitude smaller than a comparable
SiO
2
gate dielectric metal–oxide–semiconductor field effect transistors.</description><identifier>ISSN: 0734-211X</identifier><identifier>ISSN: 1071-1023</identifier><identifier>EISSN: 1520-8567</identifier><identifier>DOI: 10.1116/1.591445</identifier><identifier>CODEN: JVTBD9</identifier><language>eng</language><subject>Dielectric properties ; Gates (transistor) ; Leakage currents ; Molecular beam epitaxy ; Perovskite ; Reflection high energy electron diffraction ; Strontium compounds ; Surface roughness ; Thin film transistors ; X ray crystallography</subject><ispartof>Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2000-05, Vol.18 (3), p.1653-1657</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-ca112ded75d01d5d3e24c06b405ea88fd97c3c2cb5f65561a551ecb40a11ba433</citedby><cites>FETCH-LOGICAL-c325t-ca112ded75d01d5d3e24c06b405ea88fd97c3c2cb5f65561a551ecb40a11ba433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><creatorcontrib>Yu, Z.</creatorcontrib><creatorcontrib>Ramdani, J.</creatorcontrib><creatorcontrib>Curless, J. A.</creatorcontrib><creatorcontrib>Finder, J. M.</creatorcontrib><creatorcontrib>Overgaard, C. D.</creatorcontrib><creatorcontrib>Droopad, R.</creatorcontrib><creatorcontrib>Eisenbeiser, K. W.</creatorcontrib><creatorcontrib>Hallmark, J. A.</creatorcontrib><creatorcontrib>Ooms, W. J.</creatorcontrib><creatorcontrib>Conner, J. R.</creatorcontrib><creatorcontrib>Kaushik, V. S.</creatorcontrib><title>Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy</title><title>Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures</title><description>Thin film perovskite-type oxide
SrTiO
3
has been grown epitaxially on Si(001) substrate by molecular beam epitaxy. Reflection high energy electron diffraction and x-ray diffraction analysis indicate high quality
SrTiO
3
heteroepitaxy on Si substrate with
SrTiO
3
(001)//Si(001)
and
SrTiO
3
[010]//Si[110]
.
The
SrTiO
3
surface is atomically as smooth as the starting substrate surface, with a root mean square roughness of 1.2 Å observed by atomic force microscopy. The thickness of the amorphous interfacial layer between
SrTiO
3
and Si has been engineered to minimize the device short channel effect. An effective oxide thickness <10 Å has been obtained for a 110 Å thick dielectric film. The interface state density between
SrTiO
3
and Si is
6.4×10
10
cm
−2
eV
−1
,
and the inversion layer carrier mobilities are 221 and 62 cm2 V−1 s−1 for n- and p-channel metal–oxide–semiconductor devices with 1.2 μm effective channel length, respectively. The gate leakage in these devices is two orders of magnitude smaller than a comparable
SiO
2
gate dielectric metal–oxide–semiconductor field effect transistors.</description><subject>Dielectric properties</subject><subject>Gates (transistor)</subject><subject>Leakage currents</subject><subject>Molecular beam epitaxy</subject><subject>Perovskite</subject><subject>Reflection high energy electron diffraction</subject><subject>Strontium compounds</subject><subject>Surface roughness</subject><subject>Thin film transistors</subject><subject>X ray crystallography</subject><issn>0734-211X</issn><issn>1071-1023</issn><issn>1520-8567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqd0E1OwzAQBWALgUQpSBzBO2CR4rE9SbtEFb-qxAYkdpbjOGBw4mCnhd6eQBAHYDWL-eZJ8wg5BjYDgPwcZrgAKXGHTAA5y-aYF7tkwgohMw7wtE8OUnpljOUoxITcXXau159Oe9rZGDbpzfWW9i-upbXzTaLPMXy0NLQ0Oe_MMMstbYK3Zu11pKXVDbU_EdtDsldrn-zR75ySx6vLh-VNtrq_vl1erDIjOPaZ0QC8slWBFYMKK2G5NCwvJUOr5_O6WhRGGG5KrHPEHDQiWDOsh7tSSyGm5GTM7WJ4X9vUq8YlY73XrQ3rpAqJuZxzXgzydJQmhpSirVUXXaPjVgFT320pUGNbAz0baTLDM70L7b_sJsQ_p7qqFl-YYXiv</recordid><startdate>200005</startdate><enddate>200005</enddate><creator>Yu, Z.</creator><creator>Ramdani, J.</creator><creator>Curless, J. A.</creator><creator>Finder, J. M.</creator><creator>Overgaard, C. D.</creator><creator>Droopad, R.</creator><creator>Eisenbeiser, K. W.</creator><creator>Hallmark, J. A.</creator><creator>Ooms, W. J.</creator><creator>Conner, J. R.</creator><creator>Kaushik, V. S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>200005</creationdate><title>Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy</title><author>Yu, Z. ; Ramdani, J. ; Curless, J. A. ; Finder, J. M. ; Overgaard, C. D. ; Droopad, R. ; Eisenbeiser, K. W. ; Hallmark, J. A. ; Ooms, W. J. ; Conner, J. R. ; Kaushik, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ca112ded75d01d5d3e24c06b405ea88fd97c3c2cb5f65561a551ecb40a11ba433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Dielectric properties</topic><topic>Gates (transistor)</topic><topic>Leakage currents</topic><topic>Molecular beam epitaxy</topic><topic>Perovskite</topic><topic>Reflection high energy electron diffraction</topic><topic>Strontium compounds</topic><topic>Surface roughness</topic><topic>Thin film transistors</topic><topic>X ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Z.</creatorcontrib><creatorcontrib>Ramdani, J.</creatorcontrib><creatorcontrib>Curless, J. A.</creatorcontrib><creatorcontrib>Finder, J. M.</creatorcontrib><creatorcontrib>Overgaard, C. D.</creatorcontrib><creatorcontrib>Droopad, R.</creatorcontrib><creatorcontrib>Eisenbeiser, K. W.</creatorcontrib><creatorcontrib>Hallmark, J. A.</creatorcontrib><creatorcontrib>Ooms, W. J.</creatorcontrib><creatorcontrib>Conner, J. R.</creatorcontrib><creatorcontrib>Kaushik, V. S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Z.</au><au>Ramdani, J.</au><au>Curless, J. A.</au><au>Finder, J. M.</au><au>Overgaard, C. D.</au><au>Droopad, R.</au><au>Eisenbeiser, K. W.</au><au>Hallmark, J. A.</au><au>Ooms, W. J.</au><au>Conner, J. R.</au><au>Kaushik, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy</atitle><jtitle>Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures</jtitle><date>2000-05</date><risdate>2000</risdate><volume>18</volume><issue>3</issue><spage>1653</spage><epage>1657</epage><pages>1653-1657</pages><issn>0734-211X</issn><issn>1071-1023</issn><eissn>1520-8567</eissn><coden>JVTBD9</coden><abstract>Thin film perovskite-type oxide
SrTiO
3
has been grown epitaxially on Si(001) substrate by molecular beam epitaxy. Reflection high energy electron diffraction and x-ray diffraction analysis indicate high quality
SrTiO
3
heteroepitaxy on Si substrate with
SrTiO
3
(001)//Si(001)
and
SrTiO
3
[010]//Si[110]
.
The
SrTiO
3
surface is atomically as smooth as the starting substrate surface, with a root mean square roughness of 1.2 Å observed by atomic force microscopy. The thickness of the amorphous interfacial layer between
SrTiO
3
and Si has been engineered to minimize the device short channel effect. An effective oxide thickness <10 Å has been obtained for a 110 Å thick dielectric film. The interface state density between
SrTiO
3
and Si is
6.4×10
10
cm
−2
eV
−1
,
and the inversion layer carrier mobilities are 221 and 62 cm2 V−1 s−1 for n- and p-channel metal–oxide–semiconductor devices with 1.2 μm effective channel length, respectively. The gate leakage in these devices is two orders of magnitude smaller than a comparable
SiO
2
gate dielectric metal–oxide–semiconductor field effect transistors.</abstract><doi>10.1116/1.591445</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0734-211X |
ispartof | Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2000-05, Vol.18 (3), p.1653-1657 |
issn | 0734-211X 1071-1023 1520-8567 |
language | eng |
recordid | cdi_scitation_primary_10_1116_1_591445 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Dielectric properties Gates (transistor) Leakage currents Molecular beam epitaxy Perovskite Reflection high energy electron diffraction Strontium compounds Surface roughness Thin film transistors X ray crystallography |
title | Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20perovskite%20thin%20films%20grown%20on%20silicon%20by%20molecular%20beam%20epitaxy&rft.jtitle=Journal%20of%20Vacuum%20Science%20&%20Technology%20B:%20Microelectronics%20and%20Nanometer%20Structures&rft.au=Yu,%20Z.&rft.date=2000-05&rft.volume=18&rft.issue=3&rft.spage=1653&rft.epage=1657&rft.pages=1653-1657&rft.issn=0734-211X&rft.eissn=1520-8567&rft.coden=JVTBD9&rft_id=info:doi/10.1116/1.591445&rft_dat=%3Cproquest_scita%3E745648227%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-ca112ded75d01d5d3e24c06b405ea88fd97c3c2cb5f65561a551ecb40a11ba433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=745648227&rft_id=info:pmid/&rfr_iscdi=true |