Loading…

The role of plasma in plasma-enhanced atomic layer deposition of crystalline films

The inclusion of plasma in atomic layer deposition processes generally offers the benefit of substantially reduced growth temperatures and greater flexibility in tailoring the gas-phase chemistry to produce specific film characteristics. The benefits plasmas provide, however, come at the cost of a c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films Surfaces, and Films, 2020-07, Vol.38 (4)
Main Authors: Boris, David R., Wheeler, Virginia D., Nepal, Neeraj, Qadri, Syed B., Walton, Scott G., Eddy, Charles (Chip) R.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-3b6817a44d82fd52beb7335d4d318038d778639301f762c0f43fec626d0bd1aa3
cites cdi_FETCH-LOGICAL-c400t-3b6817a44d82fd52beb7335d4d318038d778639301f762c0f43fec626d0bd1aa3
container_end_page
container_issue 4
container_start_page
container_title Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
container_volume 38
creator Boris, David R.
Wheeler, Virginia D.
Nepal, Neeraj
Qadri, Syed B.
Walton, Scott G.
Eddy, Charles (Chip) R.
description The inclusion of plasma in atomic layer deposition processes generally offers the benefit of substantially reduced growth temperatures and greater flexibility in tailoring the gas-phase chemistry to produce specific film characteristics. The benefits plasmas provide, however, come at the cost of a complex array of process variables that often challenge the ability to predict, a priori, the influence of any one input parameter. In this work, the authors attempt to provide some clarity as to how plasmas are formed and controlled and how they can most optimally be employed within the framework of atomic layer deposition. To begin, the authors cover some of the fundamentals of plasma generation along with the production of energetic and reactive species and their transport within the plasma. They then focus on how different plasma generation schemes and geometries, often employed in plasma-enhanced atomic layer deposition (PEALD), differ in their production of energetic and reactive species. They also address the plasma-surface interactions that are critical for film growth and control of crystallinity. Throughout this work, the authors use both current experimental data and a review of previously published works to describe how variations in the approach to plasma generation and the interactions between plasma-produced species and the growth surface influence the plasma reactant step in PEALD processes. The authors highlight two case studies to demonstrate how these relationships can be used to control the phase purity of crystalline titanium dioxide (TiO2) films and grow crystalline growth of semiconducting indium nitride (InN).
doi_str_mv 10.1116/6.0000145
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1116_6_0000145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_6_0000145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-3b6817a44d82fd52beb7335d4d318038d778639301f762c0f43fec626d0bd1aa3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-Qq8LWmSSb3R6laBUKgtTzks0HjWQ3S7II--9tadGD4FxmDs8Mw0vILcICEeWDXMC-UJRnZIYlg6Iuy-U5mUHFRcEQ8JJc5fy5N4yBnJH37c7SFIOl0dEhqNwp6vvTVNh-p3ptDVVj7LymQU02UWOHmP3oY39Y0mnKowrB95Y6H7p8TS6cCtnenPqcfDw_bVcvxeZt_bp63BRaAIwFb2WNlRLC1MyZkrW2rTgvjTAca-C1qapa8iUHdJVkGpzgzmrJpIHWoFJ8Tu6Od3WKOSfrmiH5TqWpQWgOYTSyOYWxt_dHm7Uf1eH1H_wV0y9sBuP-w38vfwPLFG04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The role of plasma in plasma-enhanced atomic layer deposition of crystalline films</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Boris, David R. ; Wheeler, Virginia D. ; Nepal, Neeraj ; Qadri, Syed B. ; Walton, Scott G. ; Eddy, Charles (Chip) R.</creator><creatorcontrib>Boris, David R. ; Wheeler, Virginia D. ; Nepal, Neeraj ; Qadri, Syed B. ; Walton, Scott G. ; Eddy, Charles (Chip) R.</creatorcontrib><description>The inclusion of plasma in atomic layer deposition processes generally offers the benefit of substantially reduced growth temperatures and greater flexibility in tailoring the gas-phase chemistry to produce specific film characteristics. The benefits plasmas provide, however, come at the cost of a complex array of process variables that often challenge the ability to predict, a priori, the influence of any one input parameter. In this work, the authors attempt to provide some clarity as to how plasmas are formed and controlled and how they can most optimally be employed within the framework of atomic layer deposition. To begin, the authors cover some of the fundamentals of plasma generation along with the production of energetic and reactive species and their transport within the plasma. They then focus on how different plasma generation schemes and geometries, often employed in plasma-enhanced atomic layer deposition (PEALD), differ in their production of energetic and reactive species. They also address the plasma-surface interactions that are critical for film growth and control of crystallinity. Throughout this work, the authors use both current experimental data and a review of previously published works to describe how variations in the approach to plasma generation and the interactions between plasma-produced species and the growth surface influence the plasma reactant step in PEALD processes. The authors highlight two case studies to demonstrate how these relationships can be used to control the phase purity of crystalline titanium dioxide (TiO2) films and grow crystalline growth of semiconducting indium nitride (InN).</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/6.0000145</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><ispartof>Journal of Vacuum Science &amp; Technology A: Vacuum, Surfaces, and Films, 2020-07, Vol.38 (4)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-3b6817a44d82fd52beb7335d4d318038d778639301f762c0f43fec626d0bd1aa3</citedby><cites>FETCH-LOGICAL-c400t-3b6817a44d82fd52beb7335d4d318038d778639301f762c0f43fec626d0bd1aa3</cites><orcidid>0000-0002-8382-4210 ; 0000-0002-6024-9516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>313,314,780,784,792,27922,27924,27925</link.rule.ids></links><search><creatorcontrib>Boris, David R.</creatorcontrib><creatorcontrib>Wheeler, Virginia D.</creatorcontrib><creatorcontrib>Nepal, Neeraj</creatorcontrib><creatorcontrib>Qadri, Syed B.</creatorcontrib><creatorcontrib>Walton, Scott G.</creatorcontrib><creatorcontrib>Eddy, Charles (Chip) R.</creatorcontrib><title>The role of plasma in plasma-enhanced atomic layer deposition of crystalline films</title><title>Journal of Vacuum Science &amp; Technology A: Vacuum, Surfaces, and Films</title><description>The inclusion of plasma in atomic layer deposition processes generally offers the benefit of substantially reduced growth temperatures and greater flexibility in tailoring the gas-phase chemistry to produce specific film characteristics. The benefits plasmas provide, however, come at the cost of a complex array of process variables that often challenge the ability to predict, a priori, the influence of any one input parameter. In this work, the authors attempt to provide some clarity as to how plasmas are formed and controlled and how they can most optimally be employed within the framework of atomic layer deposition. To begin, the authors cover some of the fundamentals of plasma generation along with the production of energetic and reactive species and their transport within the plasma. They then focus on how different plasma generation schemes and geometries, often employed in plasma-enhanced atomic layer deposition (PEALD), differ in their production of energetic and reactive species. They also address the plasma-surface interactions that are critical for film growth and control of crystallinity. Throughout this work, the authors use both current experimental data and a review of previously published works to describe how variations in the approach to plasma generation and the interactions between plasma-produced species and the growth surface influence the plasma reactant step in PEALD processes. The authors highlight two case studies to demonstrate how these relationships can be used to control the phase purity of crystalline titanium dioxide (TiO2) films and grow crystalline growth of semiconducting indium nitride (InN).</description><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-Qq8LWmSSb3R6laBUKgtTzks0HjWQ3S7II--9tadGD4FxmDs8Mw0vILcICEeWDXMC-UJRnZIYlg6Iuy-U5mUHFRcEQ8JJc5fy5N4yBnJH37c7SFIOl0dEhqNwp6vvTVNh-p3ptDVVj7LymQU02UWOHmP3oY39Y0mnKowrB95Y6H7p8TS6cCtnenPqcfDw_bVcvxeZt_bp63BRaAIwFb2WNlRLC1MyZkrW2rTgvjTAca-C1qapa8iUHdJVkGpzgzmrJpIHWoFJ8Tu6Od3WKOSfrmiH5TqWpQWgOYTSyOYWxt_dHm7Uf1eH1H_wV0y9sBuP-w38vfwPLFG04</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Boris, David R.</creator><creator>Wheeler, Virginia D.</creator><creator>Nepal, Neeraj</creator><creator>Qadri, Syed B.</creator><creator>Walton, Scott G.</creator><creator>Eddy, Charles (Chip) R.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8382-4210</orcidid><orcidid>https://orcid.org/0000-0002-6024-9516</orcidid></search><sort><creationdate>20200701</creationdate><title>The role of plasma in plasma-enhanced atomic layer deposition of crystalline films</title><author>Boris, David R. ; Wheeler, Virginia D. ; Nepal, Neeraj ; Qadri, Syed B. ; Walton, Scott G. ; Eddy, Charles (Chip) R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-3b6817a44d82fd52beb7335d4d318038d778639301f762c0f43fec626d0bd1aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boris, David R.</creatorcontrib><creatorcontrib>Wheeler, Virginia D.</creatorcontrib><creatorcontrib>Nepal, Neeraj</creatorcontrib><creatorcontrib>Qadri, Syed B.</creatorcontrib><creatorcontrib>Walton, Scott G.</creatorcontrib><creatorcontrib>Eddy, Charles (Chip) R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Vacuum Science &amp; Technology A: Vacuum, Surfaces, and Films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boris, David R.</au><au>Wheeler, Virginia D.</au><au>Nepal, Neeraj</au><au>Qadri, Syed B.</au><au>Walton, Scott G.</au><au>Eddy, Charles (Chip) R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of plasma in plasma-enhanced atomic layer deposition of crystalline films</atitle><jtitle>Journal of Vacuum Science &amp; Technology A: Vacuum, Surfaces, and Films</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>38</volume><issue>4</issue><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>The inclusion of plasma in atomic layer deposition processes generally offers the benefit of substantially reduced growth temperatures and greater flexibility in tailoring the gas-phase chemistry to produce specific film characteristics. The benefits plasmas provide, however, come at the cost of a complex array of process variables that often challenge the ability to predict, a priori, the influence of any one input parameter. In this work, the authors attempt to provide some clarity as to how plasmas are formed and controlled and how they can most optimally be employed within the framework of atomic layer deposition. To begin, the authors cover some of the fundamentals of plasma generation along with the production of energetic and reactive species and their transport within the plasma. They then focus on how different plasma generation schemes and geometries, often employed in plasma-enhanced atomic layer deposition (PEALD), differ in their production of energetic and reactive species. They also address the plasma-surface interactions that are critical for film growth and control of crystallinity. Throughout this work, the authors use both current experimental data and a review of previously published works to describe how variations in the approach to plasma generation and the interactions between plasma-produced species and the growth surface influence the plasma reactant step in PEALD processes. The authors highlight two case studies to demonstrate how these relationships can be used to control the phase purity of crystalline titanium dioxide (TiO2) films and grow crystalline growth of semiconducting indium nitride (InN).</abstract><doi>10.1116/6.0000145</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-8382-4210</orcidid><orcidid>https://orcid.org/0000-0002-6024-9516</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2020-07, Vol.38 (4)
issn 0734-2101
1520-8559
language eng
recordid cdi_scitation_primary_10_1116_6_0000145
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title The role of plasma in plasma-enhanced atomic layer deposition of crystalline films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20plasma%20in%20plasma-enhanced%20atomic%20layer%20deposition%20of%20crystalline%20films&rft.jtitle=Journal%20of%20Vacuum%20Science%20&%20Technology%20A:%20Vacuum,%20Surfaces,%20and%20Films&rft.au=Boris,%20David%20R.&rft.date=2020-07-01&rft.volume=38&rft.issue=4&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/6.0000145&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_6_0000145%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-3b6817a44d82fd52beb7335d4d318038d778639301f762c0f43fec626d0bd1aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true