Loading…
Analog implementation of a Hodgkin–Huxley model neuron
We construct an electronic circuit for mimicking a single neuron's behavior in connection with the dynamics of the Hodgkin–Huxley mathematical model. Our results show that the electronic neuron, even though it contains binary-state circuitry components, displays a timing interplay between the i...
Saved in:
Published in: | American journal of physics 2020-11, Vol.88 (11), p.918-923 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We construct an electronic circuit for mimicking a single neuron's behavior in connection with the dynamics of the Hodgkin–Huxley mathematical model. Our results show that the electronic neuron, even though it contains binary-state circuitry components, displays a timing interplay between the ion channels, which is consistent with the corresponding timing encountered in the model equations. This is at the core of the mechanism determining not only the creation of action potentials but also the neuronal firing rate output. This work is suitable for educational purposes in physics, mathematical modeling, electronics, and neurophysiology and can be extended for implementation in networked neurons for more advanced studies of neuronal behaviors. |
---|---|
ISSN: | 0002-9505 1943-2909 |
DOI: | 10.1119/10.0001072 |