Loading…

Illustrating dynamical symmetries in classical mechanics: The Laplace–Runge–Lenz vector revisited

The inverse square force law admits a conserved vector that lies in the plane of motion. This vector has been associated with the names of Laplace, Runge, and Lenz, among others. Many workers have explored aspects of the symmetry and degeneracy associated with this vector and with analogous dynamica...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physics 2003-03, Vol.71 (3), p.243-246
Main Authors: O’Connell, Ross C., Jagannathan, Kannan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-56e4ad7206df7287f6d40a7a12f8ddb5055b8582f59499842336504652a554f33
cites cdi_FETCH-LOGICAL-c324t-56e4ad7206df7287f6d40a7a12f8ddb5055b8582f59499842336504652a554f33
container_end_page 246
container_issue 3
container_start_page 243
container_title American journal of physics
container_volume 71
creator O’Connell, Ross C.
Jagannathan, Kannan
description The inverse square force law admits a conserved vector that lies in the plane of motion. This vector has been associated with the names of Laplace, Runge, and Lenz, among others. Many workers have explored aspects of the symmetry and degeneracy associated with this vector and with analogous dynamical symmetries. We define a conserved dynamical variable α that characterizes the orientation of the orbit in two-dimensional configuration space for the Kepler problem and an analogous variable β for the isotropic harmonic oscillator. This orbit orientation variable is canonically conjugate to the angular momentum component normal to the plane of motion. We explore the canonical one-parameter group of transformations generated by α(β). Because we have an obvious pair of conserved canonically conjugate variables, it is desirable to use them as a coordinate-momentum pair. In terms of these phase space coordinates, the form of the Hamiltonian is nearly trivial because neither member of the pair can occur explicitly in the Hamiltonian. From these considerations we gain a simple picture of dynamics in phase space. The procedure we use is in the spirit of the Hamilton–Jacobi method.
doi_str_mv 10.1119/1.1524165
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1119_1_1524165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>301550271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-56e4ad7206df7287f6d40a7a12f8ddb5055b8582f59499842336504652a554f33</originalsourceid><addsrcrecordid>eNqdkMtKAzEUhoMoWKsL3yC4U5iaZJKZiTspXgoDgtR1SHNpU2YyYzJTqCvfwTf0SZzagntXP-fw8Z_DB8AlRhOMMb_FE8wIxRk7AiPMaZoQjvgxGCGESMIZYqfgLMb1MHJcoBEws6rqYxdk5_wS6q2XtVOygnFb16YLzkToPFSVjPF3Xxu1kt6peAfnKwNL2VZSme_Pr9feL3dZGv8BN0Z1TYDBbFx0ndHn4MTKKpqLQ47B2-PDfPqclC9Ps-l9maiU0C5hmaFS5wRl2uakyG2mKZK5xMQWWi-G79miYAWxjFPOC0rSNGOIZoxIxqhN0zG42ve2oXnvTezEuumDH04KgrMc4ZzjAbreQyo0MQZjRRtcLcNWYCR2EgUWB4kDe7Nno3Ld4Kjx_4M3TfgDRatt-gMghYHJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216701791</pqid></control><display><type>article</type><title>Illustrating dynamical symmetries in classical mechanics: The Laplace–Runge–Lenz vector revisited</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>O’Connell, Ross C. ; Jagannathan, Kannan</creator><creatorcontrib>O’Connell, Ross C. ; Jagannathan, Kannan</creatorcontrib><description>The inverse square force law admits a conserved vector that lies in the plane of motion. This vector has been associated with the names of Laplace, Runge, and Lenz, among others. Many workers have explored aspects of the symmetry and degeneracy associated with this vector and with analogous dynamical symmetries. We define a conserved dynamical variable α that characterizes the orientation of the orbit in two-dimensional configuration space for the Kepler problem and an analogous variable β for the isotropic harmonic oscillator. This orbit orientation variable is canonically conjugate to the angular momentum component normal to the plane of motion. We explore the canonical one-parameter group of transformations generated by α(β). Because we have an obvious pair of conserved canonically conjugate variables, it is desirable to use them as a coordinate-momentum pair. In terms of these phase space coordinates, the form of the Hamiltonian is nearly trivial because neither member of the pair can occur explicitly in the Hamiltonian. From these considerations we gain a simple picture of dynamics in phase space. The procedure we use is in the spirit of the Hamilton–Jacobi method.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.1524165</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Physics ; Theory</subject><ispartof>American journal of physics, 2003-03, Vol.71 (3), p.243-246</ispartof><rights>American Association of Physics Teachers</rights><rights>Copyright American Institute of Physics Mar 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-56e4ad7206df7287f6d40a7a12f8ddb5055b8582f59499842336504652a554f33</citedby><cites>FETCH-LOGICAL-c324t-56e4ad7206df7287f6d40a7a12f8ddb5055b8582f59499842336504652a554f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>O’Connell, Ross C.</creatorcontrib><creatorcontrib>Jagannathan, Kannan</creatorcontrib><title>Illustrating dynamical symmetries in classical mechanics: The Laplace–Runge–Lenz vector revisited</title><title>American journal of physics</title><description>The inverse square force law admits a conserved vector that lies in the plane of motion. This vector has been associated with the names of Laplace, Runge, and Lenz, among others. Many workers have explored aspects of the symmetry and degeneracy associated with this vector and with analogous dynamical symmetries. We define a conserved dynamical variable α that characterizes the orientation of the orbit in two-dimensional configuration space for the Kepler problem and an analogous variable β for the isotropic harmonic oscillator. This orbit orientation variable is canonically conjugate to the angular momentum component normal to the plane of motion. We explore the canonical one-parameter group of transformations generated by α(β). Because we have an obvious pair of conserved canonically conjugate variables, it is desirable to use them as a coordinate-momentum pair. In terms of these phase space coordinates, the form of the Hamiltonian is nearly trivial because neither member of the pair can occur explicitly in the Hamiltonian. From these considerations we gain a simple picture of dynamics in phase space. The procedure we use is in the spirit of the Hamilton–Jacobi method.</description><subject>Physics</subject><subject>Theory</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqdkMtKAzEUhoMoWKsL3yC4U5iaZJKZiTspXgoDgtR1SHNpU2YyYzJTqCvfwTf0SZzagntXP-fw8Z_DB8AlRhOMMb_FE8wIxRk7AiPMaZoQjvgxGCGESMIZYqfgLMb1MHJcoBEws6rqYxdk5_wS6q2XtVOygnFb16YLzkToPFSVjPF3Xxu1kt6peAfnKwNL2VZSme_Pr9feL3dZGv8BN0Z1TYDBbFx0ndHn4MTKKpqLQ47B2-PDfPqclC9Ps-l9maiU0C5hmaFS5wRl2uakyG2mKZK5xMQWWi-G79miYAWxjFPOC0rSNGOIZoxIxqhN0zG42ve2oXnvTezEuumDH04KgrMc4ZzjAbreQyo0MQZjRRtcLcNWYCR2EgUWB4kDe7Nno3Ld4Kjx_4M3TfgDRatt-gMghYHJ</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>O’Connell, Ross C.</creator><creator>Jagannathan, Kannan</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030301</creationdate><title>Illustrating dynamical symmetries in classical mechanics: The Laplace–Runge–Lenz vector revisited</title><author>O’Connell, Ross C. ; Jagannathan, Kannan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-56e4ad7206df7287f6d40a7a12f8ddb5055b8582f59499842336504652a554f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Physics</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Connell, Ross C.</creatorcontrib><creatorcontrib>Jagannathan, Kannan</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Connell, Ross C.</au><au>Jagannathan, Kannan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Illustrating dynamical symmetries in classical mechanics: The Laplace–Runge–Lenz vector revisited</atitle><jtitle>American journal of physics</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>71</volume><issue>3</issue><spage>243</spage><epage>246</epage><pages>243-246</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>The inverse square force law admits a conserved vector that lies in the plane of motion. This vector has been associated with the names of Laplace, Runge, and Lenz, among others. Many workers have explored aspects of the symmetry and degeneracy associated with this vector and with analogous dynamical symmetries. We define a conserved dynamical variable α that characterizes the orientation of the orbit in two-dimensional configuration space for the Kepler problem and an analogous variable β for the isotropic harmonic oscillator. This orbit orientation variable is canonically conjugate to the angular momentum component normal to the plane of motion. We explore the canonical one-parameter group of transformations generated by α(β). Because we have an obvious pair of conserved canonically conjugate variables, it is desirable to use them as a coordinate-momentum pair. In terms of these phase space coordinates, the form of the Hamiltonian is nearly trivial because neither member of the pair can occur explicitly in the Hamiltonian. From these considerations we gain a simple picture of dynamics in phase space. The procedure we use is in the spirit of the Hamilton–Jacobi method.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/1.1524165</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9505
ispartof American journal of physics, 2003-03, Vol.71 (3), p.243-246
issn 0002-9505
1943-2909
language eng
recordid cdi_scitation_primary_10_1119_1_1524165
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Physics
Theory
title Illustrating dynamical symmetries in classical mechanics: The Laplace–Runge–Lenz vector revisited
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Illustrating%20dynamical%20symmetries%20in%20classical%20mechanics:%20The%20Laplace%E2%80%93Runge%E2%80%93Lenz%20vector%20revisited&rft.jtitle=American%20journal%20of%20physics&rft.au=O%E2%80%99Connell,%20Ross%20C.&rft.date=2003-03-01&rft.volume=71&rft.issue=3&rft.spage=243&rft.epage=246&rft.pages=243-246&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.1524165&rft_dat=%3Cproquest_scita%3E301550271%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-56e4ad7206df7287f6d40a7a12f8ddb5055b8582f59499842336504652a554f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216701791&rft_id=info:pmid/&rfr_iscdi=true