Loading…

Testing and optimization of 3D-printed volumetric diffusor arrays for attenuation of blast noise

3D-printed volumetric diffusing array structures, composed of many arbitrarily shaped pillars in an optimized pattern, have previously been shown to be very effective for blast noise attenuation in a scale model experiment (Ochi et al., 2019). This work expands upon previous progress by investigatin...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Acoustical Society of America 2020-10, Vol.148 (4), p.2638-2638
Main Authors: Ochi, Gordon M., Dunn, Kyle, Muhlestein, Michael B., Wood, Tanner, Kreiger, Megan, Swearingen, Michelle E.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2638
container_issue 4
container_start_page 2638
container_title The Journal of the Acoustical Society of America
container_volume 148
creator Ochi, Gordon M.
Dunn, Kyle
Muhlestein, Michael B.
Wood, Tanner
Kreiger, Megan
Swearingen, Michelle E.
description 3D-printed volumetric diffusing array structures, composed of many arbitrarily shaped pillars in an optimized pattern, have previously been shown to be very effective for blast noise attenuation in a scale model experiment (Ochi et al., 2019). This work expands upon previous progress by investigating innovative optimization schemes for the array designs, and further testing these optimized arrays in scale model experiments with a spark gap generator operating as a surrogate blast noise source. Properties of the propagated signal, including directivity, duration, and spectral characteristics, are discussed, as well as how these properties depend on the choice of volumetric diffusor. Finally, the propagated waveform, spectra, and effective attenuation predicted using 2D-FDTD simulations are compared with the results of the experiment as a method of testing the validity of the simulations.
doi_str_mv 10.1121/1.5147333
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1121_1_5147333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jasa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c693-669be75a21ad2c567702f90985d81b37acf46297d21ea2746c200af9b48ca0f93</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsHv0GuClvzkk2yOUr9CwUvva9vs4lE2k1JskL99La2ePT05sFvhmEIuQY2A-BwBzMJtRZCnJAJSM6qRvL6lEwYY1DVRqlzcpHz5-6VjTAT8r50uYThg-LQ07gpYR2-sYQ40OipeKg2KQzF9fQrrsa1KylY2gfvxxwTxZRwm6nfy1LcMP4ZuxXmQocYsrskZx5X2V0d75Qsnx6X85dq8fb8Or9fVFYZUSllOqclcsCeW6m0ZtwbZhrZN9AJjdbXihvdc3DIda0sZwy96erGIvNGTMnNIdammHNyvt01X2PatsDa_TIttMdlduztgc02lN_O_8A_OcNj8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Testing and optimization of 3D-printed volumetric diffusor arrays for attenuation of blast noise</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Ochi, Gordon M. ; Dunn, Kyle ; Muhlestein, Michael B. ; Wood, Tanner ; Kreiger, Megan ; Swearingen, Michelle E.</creator><creatorcontrib>Ochi, Gordon M. ; Dunn, Kyle ; Muhlestein, Michael B. ; Wood, Tanner ; Kreiger, Megan ; Swearingen, Michelle E.</creatorcontrib><description>3D-printed volumetric diffusing array structures, composed of many arbitrarily shaped pillars in an optimized pattern, have previously been shown to be very effective for blast noise attenuation in a scale model experiment (Ochi et al., 2019). This work expands upon previous progress by investigating innovative optimization schemes for the array designs, and further testing these optimized arrays in scale model experiments with a spark gap generator operating as a surrogate blast noise source. Properties of the propagated signal, including directivity, duration, and spectral characteristics, are discussed, as well as how these properties depend on the choice of volumetric diffusor. Finally, the propagated waveform, spectra, and effective attenuation predicted using 2D-FDTD simulations are compared with the results of the experiment as a method of testing the validity of the simulations.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.5147333</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2020-10, Vol.148 (4), p.2638-2638</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ochi, Gordon M.</creatorcontrib><creatorcontrib>Dunn, Kyle</creatorcontrib><creatorcontrib>Muhlestein, Michael B.</creatorcontrib><creatorcontrib>Wood, Tanner</creatorcontrib><creatorcontrib>Kreiger, Megan</creatorcontrib><creatorcontrib>Swearingen, Michelle E.</creatorcontrib><title>Testing and optimization of 3D-printed volumetric diffusor arrays for attenuation of blast noise</title><title>The Journal of the Acoustical Society of America</title><description>3D-printed volumetric diffusing array structures, composed of many arbitrarily shaped pillars in an optimized pattern, have previously been shown to be very effective for blast noise attenuation in a scale model experiment (Ochi et al., 2019). This work expands upon previous progress by investigating innovative optimization schemes for the array designs, and further testing these optimized arrays in scale model experiments with a spark gap generator operating as a surrogate blast noise source. Properties of the propagated signal, including directivity, duration, and spectral characteristics, are discussed, as well as how these properties depend on the choice of volumetric diffusor. Finally, the propagated waveform, spectra, and effective attenuation predicted using 2D-FDTD simulations are compared with the results of the experiment as a method of testing the validity of the simulations.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKsHv0GuClvzkk2yOUr9CwUvva9vs4lE2k1JskL99La2ePT05sFvhmEIuQY2A-BwBzMJtRZCnJAJSM6qRvL6lEwYY1DVRqlzcpHz5-6VjTAT8r50uYThg-LQ07gpYR2-sYQ40OipeKg2KQzF9fQrrsa1KylY2gfvxxwTxZRwm6nfy1LcMP4ZuxXmQocYsrskZx5X2V0d75Qsnx6X85dq8fb8Or9fVFYZUSllOqclcsCeW6m0ZtwbZhrZN9AJjdbXihvdc3DIda0sZwy96erGIvNGTMnNIdammHNyvt01X2PatsDa_TIttMdlduztgc02lN_O_8A_OcNj8w</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Ochi, Gordon M.</creator><creator>Dunn, Kyle</creator><creator>Muhlestein, Michael B.</creator><creator>Wood, Tanner</creator><creator>Kreiger, Megan</creator><creator>Swearingen, Michelle E.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202010</creationdate><title>Testing and optimization of 3D-printed volumetric diffusor arrays for attenuation of blast noise</title><author>Ochi, Gordon M. ; Dunn, Kyle ; Muhlestein, Michael B. ; Wood, Tanner ; Kreiger, Megan ; Swearingen, Michelle E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c693-669be75a21ad2c567702f90985d81b37acf46297d21ea2746c200af9b48ca0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ochi, Gordon M.</creatorcontrib><creatorcontrib>Dunn, Kyle</creatorcontrib><creatorcontrib>Muhlestein, Michael B.</creatorcontrib><creatorcontrib>Wood, Tanner</creatorcontrib><creatorcontrib>Kreiger, Megan</creatorcontrib><creatorcontrib>Swearingen, Michelle E.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ochi, Gordon M.</au><au>Dunn, Kyle</au><au>Muhlestein, Michael B.</au><au>Wood, Tanner</au><au>Kreiger, Megan</au><au>Swearingen, Michelle E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing and optimization of 3D-printed volumetric diffusor arrays for attenuation of blast noise</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2020-10</date><risdate>2020</risdate><volume>148</volume><issue>4</issue><spage>2638</spage><epage>2638</epage><pages>2638-2638</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>3D-printed volumetric diffusing array structures, composed of many arbitrarily shaped pillars in an optimized pattern, have previously been shown to be very effective for blast noise attenuation in a scale model experiment (Ochi et al., 2019). This work expands upon previous progress by investigating innovative optimization schemes for the array designs, and further testing these optimized arrays in scale model experiments with a spark gap generator operating as a surrogate blast noise source. Properties of the propagated signal, including directivity, duration, and spectral characteristics, are discussed, as well as how these properties depend on the choice of volumetric diffusor. Finally, the propagated waveform, spectra, and effective attenuation predicted using 2D-FDTD simulations are compared with the results of the experiment as a method of testing the validity of the simulations.</abstract><doi>10.1121/1.5147333</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2020-10, Vol.148 (4), p.2638-2638
issn 0001-4966
1520-8524
language eng
recordid cdi_scitation_primary_10_1121_1_5147333
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Testing and optimization of 3D-printed volumetric diffusor arrays for attenuation of blast noise
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20and%20optimization%20of%203D-printed%20volumetric%20diffusor%20arrays%20for%20attenuation%20of%20blast%20noise&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Ochi,%20Gordon%20M.&rft.date=2020-10&rft.volume=148&rft.issue=4&rft.spage=2638&rft.epage=2638&rft.pages=2638-2638&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.5147333&rft_dat=%3Cscitation_cross%3Ejasa%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c693-669be75a21ad2c567702f90985d81b37acf46297d21ea2746c200af9b48ca0f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true