Loading…
Steady-shear rheological properties of model compatibilized blends
Block copolymers may be added as surface-active compatibilizers in order to control the morphology of blends of immiscible polymers. The effects of such added compatibilizers on the rheological properties of droplet–matrix blends are investigated experimentally. Model blends composed of polyisobutyl...
Saved in:
Published in: | Journal of rheology (New York : 1978) 2004-07, Vol.48 (4), p.725-744 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Block copolymers may be added as surface-active compatibilizers in order to control the morphology of blends of immiscible polymers. The effects of such added compatibilizers on the rheological properties of droplet–matrix blends are investigated experimentally. Model blends composed of polyisobutylene (PIB) droplets in a polydimethylsiloxane (PDMS) matrix, compatibilized with a diblock copolymer of PIB and PDMS, are studied here. The viscosity ratio of the blends, i.e., the ratio of the viscosity of the droplets to that of the matrix, is varied from 0.1 to 2.7. The viscosity and the first normal stress difference under steady shear conditions, and complex moduli after cessation of shear are measured. It is found that addition of the compatibilizer slightly raises the magnitude of the terminal complex viscosity of blends at all ratios of viscosity. Furthermore, with addition of the compatibilizer, the terminal relaxation time is found to increase sharply at high viscosity ratios, whereas the steady shear
N
1
is found to increase at low viscosity ratios. These experimental observations are consistent with Marangoni stress caused by flow-induced gradients in the compatibilizer concentration on the surface of compatibilized drops. It is shown that, qualitatively, the effects of the Marangoni stress are somewhat analogous to an increase in drop viscosity. |
---|---|
ISSN: | 0148-6055 1520-8516 |
DOI: | 10.1122/1.1765662 |