Loading…
Diode laser beam absorption in laser transformation hardening of low alloy steel
Defining and controlling the absorption of the laser beam is important since all of the heating energy is brought to the material through absorption. Even small variations in the absorption change the laser power needed by hundreds of W. In this study the absorption of a diode laser beam to low allo...
Saved in:
Published in: | Journal of laser applications 2004-08, Vol.16 (3), p.147-153 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Defining and controlling the absorption of the laser beam is important since all of the heating energy is brought to the material through absorption. Even small variations in the absorption change the laser power needed by hundreds of W. In this study the absorption of a diode laser beam to low alloy steel has been measured by a liquid calorimeter and the surface temperature has been measured with a dual wavelength pyrometer. The varied processing parameters were the power intensity of the beam, the interaction time, and the angle between the surface and the optical axis of the laser beam. Surface temperatures during hardening varied from the
A
c1
temperature to the melting point. Tests were done with a 3 kW diode laser with a 12×5 mm hardening optic. The absorptivity of a machined clean steel surface ranged from 46% to 72% depending on the processing parameters. Aluminum oxide blasting of the surface increased the relative amount of energy absorbed to the work piece. The coupling rates for blasted surfaces varied from 66% to 81%. Best absorptivity was achieved by applying graphite coating on the surface. Absorptivity values in excess of 85% were measured. |
---|---|
ISSN: | 1042-346X 1938-1387 |
DOI: | 10.2351/1.1710879 |