Loading…

Prediction of interface width in overlap joint configuration for laser welding of aluminum alloy using sensors

We present a method that can predict the interface width in an overlapping joint configuration for laser welding of Al alloys using sensors and a convolutional neural network (CNN)-based deep-learning model. The inputs for multi-input CNN-based deep-learning prediction models are spectral signals, r...

Full description

Saved in:
Bibliographic Details
Published in:Journal of laser applications 2024-08, Vol.36 (3)
Main Authors: Lee, Yoo-Eun, Choo, Woo-In, Im, Sungbin, Lee, Seung Hwan, Kam, Dong Hyuck
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c154t-554a444a80596189a9cc6e921f05e4d9491f744c91775e5f6f6050dd1629e9093
container_end_page
container_issue 3
container_start_page
container_title Journal of laser applications
container_volume 36
creator Lee, Yoo-Eun
Choo, Woo-In
Im, Sungbin
Lee, Seung Hwan
Kam, Dong Hyuck
description We present a method that can predict the interface width in an overlapping joint configuration for laser welding of Al alloys using sensors and a convolutional neural network (CNN)-based deep-learning model. The inputs for multi-input CNN-based deep-learning prediction models are spectral signals, represented by the light intensity measured by a spectrometer and dynamic images of the molten pool filmed by a charge-coupled device (CCD) camera. The interface width, used as learning data for modeling, was constructed as a database along with the process signal by cross-sectional analysis. In this study, we present results showing high accuracy in predicting the interface width in the overlap joint configuration for Al alloy laser welding. For predicting the interface width, five models are created and compared: a single CCD and spectrometer sensor algorithm, a multi-sensor algorithm with two input variables (CCD, spectrometer), a multi-sensor algorithm excluding the processing beam in the spectrometer data on the combination of Al 6014-T4 (top)/Al 6014-T4 (bottom), and a multi-sensor algorithm applied to the combination of Al 6014-T4 (top)/Al 5052-H32 (bottom). The multi-sensor algorithm with two input variables (CCD and spectrometer) on the same material combination showed the highest accuracy among the models.
doi_str_mv 10.2351/7.0001367
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_2351_7_0001367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jla</sourcerecordid><originalsourceid>FETCH-LOGICAL-c154t-554a444a80596189a9cc6e921f05e4d9491f744c91775e5f6f6050dd1629e9093</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0GuCluTzdfmKMUvKOhBwdsSspOaspuUZNfSf-9u27OneWfmmRfmReiWkkXJBH1QC0IIZVKdoRnVrCooq9T5qAkvC8bl9yW6ynkzMoopPkPhI0Hjbe9jwNFhH3pIzljAO9_0P2OP4y-k1mzxJo5LbGNwfj0kc7hwMeHWZEh4B23jw3ryMO3Q-TB0o2jjHg95mmcIOaZ8jS6caTPcnOocfT0_fS5fi9X7y9vycVVYKnhfCMEN59xURGhJK220tRJ0SR0RwBvNNXWKc6upUgKEk04SQZqGylKDJprN0d3R16aYcwJXb5PvTNrXlNRTULWqT0GN7P2Rzdb3h7_-gf8AfFJpUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of interface width in overlap joint configuration for laser welding of aluminum alloy using sensors</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Lee, Yoo-Eun ; Choo, Woo-In ; Im, Sungbin ; Lee, Seung Hwan ; Kam, Dong Hyuck</creator><creatorcontrib>Lee, Yoo-Eun ; Choo, Woo-In ; Im, Sungbin ; Lee, Seung Hwan ; Kam, Dong Hyuck</creatorcontrib><description>We present a method that can predict the interface width in an overlapping joint configuration for laser welding of Al alloys using sensors and a convolutional neural network (CNN)-based deep-learning model. The inputs for multi-input CNN-based deep-learning prediction models are spectral signals, represented by the light intensity measured by a spectrometer and dynamic images of the molten pool filmed by a charge-coupled device (CCD) camera. The interface width, used as learning data for modeling, was constructed as a database along with the process signal by cross-sectional analysis. In this study, we present results showing high accuracy in predicting the interface width in the overlap joint configuration for Al alloy laser welding. For predicting the interface width, five models are created and compared: a single CCD and spectrometer sensor algorithm, a multi-sensor algorithm with two input variables (CCD, spectrometer), a multi-sensor algorithm excluding the processing beam in the spectrometer data on the combination of Al 6014-T4 (top)/Al 6014-T4 (bottom), and a multi-sensor algorithm applied to the combination of Al 6014-T4 (top)/Al 5052-H32 (bottom). The multi-sensor algorithm with two input variables (CCD and spectrometer) on the same material combination showed the highest accuracy among the models.</description><identifier>ISSN: 1042-346X</identifier><identifier>EISSN: 1938-1387</identifier><identifier>DOI: 10.2351/7.0001367</identifier><identifier>CODEN: JLAPEN</identifier><language>eng</language><ispartof>Journal of laser applications, 2024-08, Vol.36 (3)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c154t-554a444a80596189a9cc6e921f05e4d9491f744c91775e5f6f6050dd1629e9093</cites><orcidid>0000-0002-4296-118X ; 0000-0002-1509-3348 ; 0000-0002-2787-7967 ; 0000-0002-4027-3973 ; 0000-0002-9053-4940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jla/article-lookup/doi/10.2351/7.0001367$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Lee, Yoo-Eun</creatorcontrib><creatorcontrib>Choo, Woo-In</creatorcontrib><creatorcontrib>Im, Sungbin</creatorcontrib><creatorcontrib>Lee, Seung Hwan</creatorcontrib><creatorcontrib>Kam, Dong Hyuck</creatorcontrib><title>Prediction of interface width in overlap joint configuration for laser welding of aluminum alloy using sensors</title><title>Journal of laser applications</title><description>We present a method that can predict the interface width in an overlapping joint configuration for laser welding of Al alloys using sensors and a convolutional neural network (CNN)-based deep-learning model. The inputs for multi-input CNN-based deep-learning prediction models are spectral signals, represented by the light intensity measured by a spectrometer and dynamic images of the molten pool filmed by a charge-coupled device (CCD) camera. The interface width, used as learning data for modeling, was constructed as a database along with the process signal by cross-sectional analysis. In this study, we present results showing high accuracy in predicting the interface width in the overlap joint configuration for Al alloy laser welding. For predicting the interface width, five models are created and compared: a single CCD and spectrometer sensor algorithm, a multi-sensor algorithm with two input variables (CCD, spectrometer), a multi-sensor algorithm excluding the processing beam in the spectrometer data on the combination of Al 6014-T4 (top)/Al 6014-T4 (bottom), and a multi-sensor algorithm applied to the combination of Al 6014-T4 (top)/Al 5052-H32 (bottom). The multi-sensor algorithm with two input variables (CCD and spectrometer) on the same material combination showed the highest accuracy among the models.</description><issn>1042-346X</issn><issn>1938-1387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0GuCluTzdfmKMUvKOhBwdsSspOaspuUZNfSf-9u27OneWfmmRfmReiWkkXJBH1QC0IIZVKdoRnVrCooq9T5qAkvC8bl9yW6ynkzMoopPkPhI0Hjbe9jwNFhH3pIzljAO9_0P2OP4y-k1mzxJo5LbGNwfj0kc7hwMeHWZEh4B23jw3ryMO3Q-TB0o2jjHg95mmcIOaZ8jS6caTPcnOocfT0_fS5fi9X7y9vycVVYKnhfCMEN59xURGhJK220tRJ0SR0RwBvNNXWKc6upUgKEk04SQZqGylKDJprN0d3R16aYcwJXb5PvTNrXlNRTULWqT0GN7P2Rzdb3h7_-gf8AfFJpUA</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Lee, Yoo-Eun</creator><creator>Choo, Woo-In</creator><creator>Im, Sungbin</creator><creator>Lee, Seung Hwan</creator><creator>Kam, Dong Hyuck</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4296-118X</orcidid><orcidid>https://orcid.org/0000-0002-1509-3348</orcidid><orcidid>https://orcid.org/0000-0002-2787-7967</orcidid><orcidid>https://orcid.org/0000-0002-4027-3973</orcidid><orcidid>https://orcid.org/0000-0002-9053-4940</orcidid></search><sort><creationdate>202408</creationdate><title>Prediction of interface width in overlap joint configuration for laser welding of aluminum alloy using sensors</title><author>Lee, Yoo-Eun ; Choo, Woo-In ; Im, Sungbin ; Lee, Seung Hwan ; Kam, Dong Hyuck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c154t-554a444a80596189a9cc6e921f05e4d9491f744c91775e5f6f6050dd1629e9093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yoo-Eun</creatorcontrib><creatorcontrib>Choo, Woo-In</creatorcontrib><creatorcontrib>Im, Sungbin</creatorcontrib><creatorcontrib>Lee, Seung Hwan</creatorcontrib><creatorcontrib>Kam, Dong Hyuck</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of laser applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yoo-Eun</au><au>Choo, Woo-In</au><au>Im, Sungbin</au><au>Lee, Seung Hwan</au><au>Kam, Dong Hyuck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of interface width in overlap joint configuration for laser welding of aluminum alloy using sensors</atitle><jtitle>Journal of laser applications</jtitle><date>2024-08</date><risdate>2024</risdate><volume>36</volume><issue>3</issue><issn>1042-346X</issn><eissn>1938-1387</eissn><coden>JLAPEN</coden><abstract>We present a method that can predict the interface width in an overlapping joint configuration for laser welding of Al alloys using sensors and a convolutional neural network (CNN)-based deep-learning model. The inputs for multi-input CNN-based deep-learning prediction models are spectral signals, represented by the light intensity measured by a spectrometer and dynamic images of the molten pool filmed by a charge-coupled device (CCD) camera. The interface width, used as learning data for modeling, was constructed as a database along with the process signal by cross-sectional analysis. In this study, we present results showing high accuracy in predicting the interface width in the overlap joint configuration for Al alloy laser welding. For predicting the interface width, five models are created and compared: a single CCD and spectrometer sensor algorithm, a multi-sensor algorithm with two input variables (CCD, spectrometer), a multi-sensor algorithm excluding the processing beam in the spectrometer data on the combination of Al 6014-T4 (top)/Al 6014-T4 (bottom), and a multi-sensor algorithm applied to the combination of Al 6014-T4 (top)/Al 5052-H32 (bottom). The multi-sensor algorithm with two input variables (CCD and spectrometer) on the same material combination showed the highest accuracy among the models.</abstract><doi>10.2351/7.0001367</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4296-118X</orcidid><orcidid>https://orcid.org/0000-0002-1509-3348</orcidid><orcidid>https://orcid.org/0000-0002-2787-7967</orcidid><orcidid>https://orcid.org/0000-0002-4027-3973</orcidid><orcidid>https://orcid.org/0000-0002-9053-4940</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1042-346X
ispartof Journal of laser applications, 2024-08, Vol.36 (3)
issn 1042-346X
1938-1387
language eng
recordid cdi_scitation_primary_10_2351_7_0001367
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
title Prediction of interface width in overlap joint configuration for laser welding of aluminum alloy using sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20interface%20width%20in%20overlap%20joint%20configuration%20for%20laser%20welding%20of%20aluminum%20alloy%20using%20sensors&rft.jtitle=Journal%20of%20laser%20applications&rft.au=Lee,%20Yoo-Eun&rft.date=2024-08&rft.volume=36&rft.issue=3&rft.issn=1042-346X&rft.eissn=1938-1387&rft.coden=JLAPEN&rft_id=info:doi/10.2351/7.0001367&rft_dat=%3Cscitation_cross%3Ejla%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c154t-554a444a80596189a9cc6e921f05e4d9491f744c91775e5f6f6050dd1629e9093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true