Loading…

Heterogeneous iris segmentation method based on modified U-Net

An accurate iris segmentation method is crucial for the iris recognition system. The conventional iris segmentation algorithms have poor adaptability when applied to heterogeneous iris databases. Therefore, researchers have applied deep learning to the field of iris segmentation. A modified U-Net is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic imaging 2021-11, Vol.30 (6), p.063015-063015
Main Authors: Huo, Guang, Lin, Dawei, Yuan, Meng, Yang, Zhiqiang, Niu, Yueqi
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An accurate iris segmentation method is crucial for the iris recognition system. The conventional iris segmentation algorithms have poor adaptability when applied to heterogeneous iris databases. Therefore, researchers have applied deep learning to the field of iris segmentation. A modified U-Net is proposed to perform the iris segmentation for heterogeneous iris databases, referred to as DropBlock and modified shortcut branch U-Net. The main work is as follows: first, EfficientNetV2 based on DropBlock is used as convolutional blocks of U-Net to improve the ability of feature extraction and generalization of the network. Second, an improved shortcut branch structure is proposed for U-Net to reduce the loss of information during the downsampling process. The experimental results on the CASIA-iris-interval-v4, IITD, and UBIRIS.v2 iris databases demonstrate that this method can not only have good versatility but also provide higher accuracy on heterogeneous databases. Compared with some state-of-the-art fusion methods, the proposed method has a significant performance advantage.
ISSN:1017-9909
1560-229X
DOI:10.1117/1.JEI.30.6.063015