Loading…
Comparison between pixel- and object-based image classification of a tropical landscape using Système Pour l'Observation de la Terre-5 imagery
Based on the Système Pour l'Observation de la Terre-5 imagery, two main techniques of classifying land-use categories in a tropical landscape are compared using two supervised algorithms: maximum likelihood classifier (MLC) and K-nearest neighbor object-based classifier. Nine combinations of sc...
Saved in:
Published in: | Journal of applied remote sensing 2013-08, Vol.7 (1), p.073512-073512 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on the Système Pour l'Observation de la Terre-5 imagery, two main techniques of classifying land-use categories in a tropical landscape are compared using two supervised algorithms: maximum likelihood classifier (MLC) and K-nearest neighbor object-based classifier. Nine combinations of scale level (SL10, SL30, and SL50) and the nearest neighbor (NN3, NN5, and NN7) are investigated in the object-based classification. Accuracy assessment is performed using two main disagreement components, i.e., quantity disagreement and allocation disagreement. The MLC results in a higher total disagreement in total landscape as compared with object-based image classification. The SL30-NN5 object-based classifier reduces allocation error by 250% as compared with the MLC. Therefore, this classifier shows a higher performance in land-use classification of the Langat basin. |
---|---|
ISSN: | 1931-3195 1931-3195 |
DOI: | 10.1117/1.JRS.7.073512 |