Loading…

Edge collection function: an analytical expression for the optical efficiency of an energy-harvesting device based on photoluminescence

An edge collection function is proposed for characterizing the optical efficiency of an energy-harvesting system that utilizes photoluminescence (PL) in a waveguide. We assume that a single spot in a waveguide is excited and that PL is isotropic. For the photons to be collected by one edge of the wa...

Full description

Saved in:
Bibliographic Details
Published in:Optical engineering 2019-10, Vol.58 (10), p.104101-104101
Main Authors: Fujieda, Ichiro, Tsutsumi, Yasuhiro, Yunoki, Kohei, Yamada, Yoshiki
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An edge collection function is proposed for characterizing the optical efficiency of an energy-harvesting system that utilizes photoluminescence (PL) in a waveguide. We assume that a single spot in a waveguide is excited and that PL is isotropic. For the photons to be collected by one edge of the waveguide, they must be emitted toward the edge, trapped in the waveguide and they must survive self-absorption on the way. The optical efficiency is formulated as the product of these probabilities. When this function is calculated for every spot on the waveguide and for each wavelength of the PL spectrum, the efficiency of the system is given by superposition. Its validity is checked by a Monte Carlo simulation for the case of no self-absorption loss. In experiment, we fabricate a 5-cm2 waveguide with a thin layer of Lumogen F Red 305 and measure its efficiency by placing a photodiode array in the vicinity of its edge with a small air gap. The formula roughly reproduces the efficiency and its dependency on the position of the excitation spot. This analytical approach allows one to estimate the optical efficiency for an arbitrary incident light distribution with small computational complexity.
ISSN:0091-3286
1560-2303
DOI:10.1117/1.OE.58.10.104101