Loading…

Improving the Performance of High-Energy Physics Analysis through Bitmap Indices

Bitmap indices are popular multi-dimensional data structures for accessing read-mostly data such as data warehouse (DW) applications, decision support systems (DSS) and on-line analytical processing (OLAP). One of their main strengths is that they provide good performance characteristics for complex...

Full description

Saved in:
Bibliographic Details
Main Authors: Stockinger, Kurt, Duellmann, Dirk, Hoschek, Wolfgang, Schikuta, Erich
Format: Book Chapter
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bitmap indices are popular multi-dimensional data structures for accessing read-mostly data such as data warehouse (DW) applications, decision support systems (DSS) and on-line analytical processing (OLAP). One of their main strengths is that they provide good performance characteristics for complex adhoc queries and an efficient combination of multiple index dimensions in one query. Considerable research work has been done in the area of finite (and low) attribute cardinalities. However, additional complexity is imposed on the design of bitmap indices for high cardinality or even non-discrete attributes, where different optimisation techniques than the ones proposed so far have to be applied. In this paper we discuss the design and implementation of bitmap indices for High-Energy Physics (HEP) analysis, where the potential search space consists of hundreds of independent dimensions. A single HEP query typically covers 10 to 100 dimensions out of the whole search space. In this context we evaluated two different bitmap encoding techniques, namely equality encoding and range encoding. For both methods the number of bit slices (or bitmap vectors) per attribute is a central optimisation parameter. The paper presents some (first) results for choosing the optimal number of bit slices for multi-dimensional indices with attributes of different value distribution and query selectivity. We believe that this discussion is not only applicable to HEP but also to DW, DSS and OLAP type problems in general.
ISSN:0302-9743
1611-3349
DOI:10.1007/3-540-44469-6_78