Loading…
Reducing subspaces: Definitions, properties and algorithms
In this paper we introduce the new concept of reducing subspaces of a singular pencil, which extends the notion of deflating subspaces to the singular case. We briefly discuss uniqueness of such subspaces and we give an algorithm for computing them. The algorithm also gives the Kronecker canonical f...
Saved in:
Main Author: | |
---|---|
Format: | Book Chapter |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c744-f4d8589c4e762b935736068d9c8c619c4ddf73cce461216d0ba789992c9599043 |
---|---|
cites | |
container_end_page | 73 |
container_issue | |
container_start_page | 58 |
container_title | |
container_volume | |
creator | Van Dooren, Paul |
description | In this paper we introduce the new concept of reducing subspaces of a singular pencil, which extends the notion of deflating subspaces to the singular case. We briefly discuss uniqueness of such subspaces and we give an algorithm for computing them. The algorithm also gives the Kronecker canonical form of the singular pencil. |
doi_str_mv | 10.1007/BFb0062094 |
format | book_chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0062094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0062094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c744-f4d8589c4e762b935736068d9c8c619c4ddf73cce461216d0ba789992c9599043</originalsourceid><addsrcrecordid>eNpFkE9Lw0AUxNd_YKi5-Aly9GD0vezL7r7etFoVCoL0HpLdTV2tSci2378RRU8DM8ww_IS4RLhBAH17v2wAVAFMRyJlbWRJIJlI47FIUKHOWXFx8pchspHmVCRTucwNSToXaYwfAIBKGyJMxPzNu70N3SaL-yYOtfVxnj34NnRhF_ouXmfD2A9-3AUfs7pzWb3d9GPYvX_FC3HW1tvo01-difXycb14zlevTy-Lu1VuNVHekjOlYUteq6JhWWqpQBnH1liFk-9cq6W1nhQWqBw0tTbMXFgumYHkTFz9zMZhnH76sWr6_jNWCNU3leqfijwAnyhN_A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Reducing subspaces: Definitions, properties and algorithms</title><source>SpringerLink Books Lecture Notes In Mathematics Archive</source><source>Springer Nature - Springer Lecture Notes in Mathematics eBooks</source><source>SpringerLINK Lecture Notes in Mathematics Archive (Through 1996)</source><creator>Van Dooren, Paul</creator><contributor>Kågström, Bo ; Ruhe, Axel</contributor><creatorcontrib>Van Dooren, Paul ; Kågström, Bo ; Ruhe, Axel</creatorcontrib><description>In this paper we introduce the new concept of reducing subspaces of a singular pencil, which extends the notion of deflating subspaces to the singular case. We briefly discuss uniqueness of such subspaces and we give an algorithm for computing them. The algorithm also gives the Kronecker canonical form of the singular pencil.</description><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 9783540119838</identifier><identifier>ISBN: 3540119833</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 9783540394471</identifier><identifier>EISBN: 3540394478</identifier><identifier>DOI: 10.1007/BFb0062094</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Full Column Rank ; Minimal Index ; Regular Part ; Singular Case ; Unique Pair</subject><ispartof>Matrix Pencils, 2006, p.58-73</ispartof><rights>Springer-Verlag 1983</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c744-f4d8589c4e762b935736068d9c8c619c4ddf73cce461216d0ba789992c9599043</citedby><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0062094$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0062094$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,37668,38043,40859,41231,41928,42300</link.rule.ids></links><search><contributor>Kågström, Bo</contributor><contributor>Ruhe, Axel</contributor><creatorcontrib>Van Dooren, Paul</creatorcontrib><title>Reducing subspaces: Definitions, properties and algorithms</title><title>Matrix Pencils</title><description>In this paper we introduce the new concept of reducing subspaces of a singular pencil, which extends the notion of deflating subspaces to the singular case. We briefly discuss uniqueness of such subspaces and we give an algorithm for computing them. The algorithm also gives the Kronecker canonical form of the singular pencil.</description><subject>Full Column Rank</subject><subject>Minimal Index</subject><subject>Regular Part</subject><subject>Singular Case</subject><subject>Unique Pair</subject><issn>0075-8434</issn><issn>1617-9692</issn><isbn>9783540119838</isbn><isbn>3540119833</isbn><isbn>9783540394471</isbn><isbn>3540394478</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFkE9Lw0AUxNd_YKi5-Aly9GD0vezL7r7etFoVCoL0HpLdTV2tSci2378RRU8DM8ww_IS4RLhBAH17v2wAVAFMRyJlbWRJIJlI47FIUKHOWXFx8pchspHmVCRTucwNSToXaYwfAIBKGyJMxPzNu70N3SaL-yYOtfVxnj34NnRhF_ouXmfD2A9-3AUfs7pzWb3d9GPYvX_FC3HW1tvo01-difXycb14zlevTy-Lu1VuNVHekjOlYUteq6JhWWqpQBnH1liFk-9cq6W1nhQWqBw0tTbMXFgumYHkTFz9zMZhnH76sWr6_jNWCNU3leqfijwAnyhN_A</recordid><startdate>20060824</startdate><enddate>20060824</enddate><creator>Van Dooren, Paul</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20060824</creationdate><title>Reducing subspaces: Definitions, properties and algorithms</title><author>Van Dooren, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c744-f4d8589c4e762b935736068d9c8c619c4ddf73cce461216d0ba789992c9599043</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Full Column Rank</topic><topic>Minimal Index</topic><topic>Regular Part</topic><topic>Singular Case</topic><topic>Unique Pair</topic><toplevel>online_resources</toplevel><creatorcontrib>Van Dooren, Paul</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Dooren, Paul</au><au>Kågström, Bo</au><au>Ruhe, Axel</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Reducing subspaces: Definitions, properties and algorithms</atitle><btitle>Matrix Pencils</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2006-08-24</date><risdate>2006</risdate><spage>58</spage><epage>73</epage><pages>58-73</pages><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>9783540119838</isbn><isbn>3540119833</isbn><eisbn>9783540394471</eisbn><eisbn>3540394478</eisbn><abstract>In this paper we introduce the new concept of reducing subspaces of a singular pencil, which extends the notion of deflating subspaces to the singular case. We briefly discuss uniqueness of such subspaces and we give an algorithm for computing them. The algorithm also gives the Kronecker canonical form of the singular pencil.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0062094</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-8434 |
ispartof | Matrix Pencils, 2006, p.58-73 |
issn | 0075-8434 1617-9692 |
language | eng |
recordid | cdi_springer_books_10_1007_BFb0062094 |
source | SpringerLink Books Lecture Notes In Mathematics Archive; Springer Nature - Springer Lecture Notes in Mathematics eBooks; SpringerLINK Lecture Notes in Mathematics Archive (Through 1996) |
subjects | Full Column Rank Minimal Index Regular Part Singular Case Unique Pair |
title | Reducing subspaces: Definitions, properties and algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Reducing%20subspaces:%20Definitions,%20properties%20and%20algorithms&rft.btitle=Matrix%20Pencils&rft.au=Van%20Dooren,%20Paul&rft.date=2006-08-24&rft.spage=58&rft.epage=73&rft.pages=58-73&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=9783540119838&rft.isbn_list=3540119833&rft_id=info:doi/10.1007/BFb0062094&rft.eisbn=9783540394471&rft.eisbn_list=3540394478&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0062094%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c744-f4d8589c4e762b935736068d9c8c619c4ddf73cce461216d0ba789992c9599043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |