Loading…
A cohomological method for the determination of limit multiplicities
Saved in:
Main Authors: | , |
---|---|
Format: | Book Chapter |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 272 |
container_issue | |
container_start_page | 262 |
container_title | |
container_volume | |
creator | Rohlfs, Jürgen Speh, Birgit |
description | |
doi_str_mv | 10.1007/BFb0073026 |
format | book_chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0073026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0073026</sourcerecordid><originalsourceid>FETCH-springer_books_10_1007_BFb00730263</originalsourceid><addsrcrecordid>eNqVjrtygzAQAM-PzAQ7bvwFKtMQn0AgUyZ-TD7APYNBwMUS50HK_8eZZMa1qy12iwVYS3yTiHrzcTzfkGKST2CRZgqV1jrLpxDJXOq4yItk9iek1iiLOUS3Pou3KlXPsPD-CzHJlMII9u-i5p4dW-6orqxwJvTciJZHEXojGhPM6GioAvEguBWWHAXhvm2gq6WaAhn_Ak9tZb1Z_XMJr8fDafcZ--tIQ2fG8sx88aXE8ve_vP-nD6Q_ASdGAQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>A cohomological method for the determination of limit multiplicities</title><source>SpringerLink Books Lecture Notes In Mathematics Archive</source><source>Springer Nature - Springer Lecture Notes in Mathematics eBooks</source><source>SpringerLINK Lecture Notes in Mathematics Archive (Through 1996)</source><creator>Rohlfs, Jürgen ; Speh, Birgit</creator><contributor>Vergne, Michèle ; Carmona, Jacques ; M.I.T. ; Delorme, Patrick</contributor><creatorcontrib>Rohlfs, Jürgen ; Speh, Birgit ; Vergne, Michèle ; Carmona, Jacques ; M.I.T. ; Delorme, Patrick</creatorcontrib><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 3540177019</identifier><identifier>ISBN: 9783540177012</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 3540477756</identifier><identifier>EISBN: 9783540477754</identifier><identifier>DOI: 10.1007/BFb0073026</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cartan Involution ; Cocompact Lattice ; Congruence Subgroup ; Discrete Series Representation ; Formal Degree</subject><ispartof>Non-Commutative Harmonic Analysis and Lie Groups, 2006, p.262-272</ispartof><rights>Springer-Verlag 1987</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0073026$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0073026$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,37668,38043,40859,41231,41928,42300</link.rule.ids></links><search><contributor>Vergne, Michèle</contributor><contributor>Carmona, Jacques</contributor><contributor>M.I.T.</contributor><contributor>Delorme, Patrick</contributor><creatorcontrib>Rohlfs, Jürgen</creatorcontrib><creatorcontrib>Speh, Birgit</creatorcontrib><title>A cohomological method for the determination of limit multiplicities</title><title>Non-Commutative Harmonic Analysis and Lie Groups</title><subject>Cartan Involution</subject><subject>Cocompact Lattice</subject><subject>Congruence Subgroup</subject><subject>Discrete Series Representation</subject><subject>Formal Degree</subject><issn>0075-8434</issn><issn>1617-9692</issn><isbn>3540177019</isbn><isbn>9783540177012</isbn><isbn>3540477756</isbn><isbn>9783540477754</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNqVjrtygzAQAM-PzAQ7bvwFKtMQn0AgUyZ-TD7APYNBwMUS50HK_8eZZMa1qy12iwVYS3yTiHrzcTzfkGKST2CRZgqV1jrLpxDJXOq4yItk9iek1iiLOUS3Pou3KlXPsPD-CzHJlMII9u-i5p4dW-6orqxwJvTciJZHEXojGhPM6GioAvEguBWWHAXhvm2gq6WaAhn_Ak9tZb1Z_XMJr8fDafcZ--tIQ2fG8sx88aXE8ve_vP-nD6Q_ASdGAQ</recordid><startdate>20060911</startdate><enddate>20060911</enddate><creator>Rohlfs, Jürgen</creator><creator>Speh, Birgit</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20060911</creationdate><title>A cohomological method for the determination of limit multiplicities</title><author>Rohlfs, Jürgen ; Speh, Birgit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-springer_books_10_1007_BFb00730263</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cartan Involution</topic><topic>Cocompact Lattice</topic><topic>Congruence Subgroup</topic><topic>Discrete Series Representation</topic><topic>Formal Degree</topic><toplevel>online_resources</toplevel><creatorcontrib>Rohlfs, Jürgen</creatorcontrib><creatorcontrib>Speh, Birgit</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohlfs, Jürgen</au><au>Speh, Birgit</au><au>Vergne, Michèle</au><au>Carmona, Jacques</au><au>M.I.T.</au><au>Delorme, Patrick</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A cohomological method for the determination of limit multiplicities</atitle><btitle>Non-Commutative Harmonic Analysis and Lie Groups</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2006-09-11</date><risdate>2006</risdate><spage>262</spage><epage>272</epage><pages>262-272</pages><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>3540177019</isbn><isbn>9783540177012</isbn><eisbn>3540477756</eisbn><eisbn>9783540477754</eisbn><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0073026</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-8434 |
ispartof | Non-Commutative Harmonic Analysis and Lie Groups, 2006, p.262-272 |
issn | 0075-8434 1617-9692 |
language | eng |
recordid | cdi_springer_books_10_1007_BFb0073026 |
source | SpringerLink Books Lecture Notes In Mathematics Archive; Springer Nature - Springer Lecture Notes in Mathematics eBooks; SpringerLINK Lecture Notes in Mathematics Archive (Through 1996) |
subjects | Cartan Involution Cocompact Lattice Congruence Subgroup Discrete Series Representation Formal Degree |
title | A cohomological method for the determination of limit multiplicities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20cohomological%20method%20for%20the%20determination%20of%20limit%20multiplicities&rft.btitle=Non-Commutative%20Harmonic%20Analysis%20and%20Lie%20Groups&rft.au=Rohlfs,%20J%C3%BCrgen&rft.date=2006-09-11&rft.spage=262&rft.epage=272&rft.pages=262-272&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=3540177019&rft.isbn_list=9783540177012&rft_id=info:doi/10.1007/BFb0073026&rft.eisbn=3540477756&rft.eisbn_list=9783540477754&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0073026%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-springer_books_10_1007_BFb00730263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |