Loading…

Quasi-regular boundary and Stokes' formula for a sub-analytic leaf

The aim of this paper is to prove some differential properties of sub-analytic leaves related to the conditions of Whitney, and to derive Stokes' formula for sub-analytic leaves.

Saved in:
Bibliographic Details
Main Author: Pawłucki, Wiesław
Format: Book Chapter
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c747-4094ba592ad85cf26a7852c36e52d2d4faa7975da3e8d19ba919178ed393f7f83
cites
container_end_page 252
container_issue
container_start_page 235
container_title
container_volume
creator Pawłucki, Wiesław
description The aim of this paper is to prove some differential properties of sub-analytic leaves related to the conditions of Whitney, and to derive Stokes' formula for sub-analytic leaves.
doi_str_mv 10.1007/BFb0076157
format book_chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0076157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0076157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c747-4094ba592ad85cf26a7852c36e52d2d4faa7975da3e8d19ba919178ed393f7f83</originalsourceid><addsrcrecordid>eNpFkL1OwzAYRc2fRChdeAJvsBj8_9kjrSggVUKI7tGX2K5KQ4LiZujbN1WRmM5wru5wCLkT_FFwDk-zRTXCCgNn5EYZzZUHpc05KYQVwLz18uIkhOWGwyUpxr1hTit9TaY5f3M-KnBWyILMPgfMG9bH9dBgT6tuaAP2e4ptoF-7bhvzPU1d_zPaIynSPFQMW2z2u01Nm4jpllwlbHKc_nFCVouX1fyNLT9e3-fPS1aDBqa51xUaLzE4UydpEZyRtbLRyCCDTojgwQRU0QXhK_TCC3AxKK8SJKcm5OF0m3_7TbuOfVl13TaXgpfHLuV_F3UAvCxPsQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Quasi-regular boundary and Stokes' formula for a sub-analytic leaf</title><source>SpringerLink Books Lecture Notes In Mathematics Archive</source><source>Springer Nature - Springer Lecture Notes in Mathematics eBooks</source><source>SpringerLINK Lecture Notes in Mathematics Archive (Through 1996)</source><creator>Pawłucki, Wiesław</creator><contributor>Ławrynowicz, Julian</contributor><creatorcontrib>Pawłucki, Wiesław ; Ławrynowicz, Julian</creatorcontrib><description>The aim of this paper is to prove some differential properties of sub-analytic leaves related to the conditions of Whitney, and to derive Stokes' formula for sub-analytic leaves.</description><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 3540160507</identifier><identifier>ISBN: 9783540160502</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 3540397345</identifier><identifier>EISBN: 9783540397342</identifier><identifier>DOI: 10.1007/BFb0076157</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytic Submanifold ; Real Finite Dimensional Vector Space ; Regular Boundary Point ; Regular Point ; Topological Component</subject><ispartof>Seminar on Deformations, 2006, p.235-252</ispartof><rights>Springer-Verlag 1985</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c747-4094ba592ad85cf26a7852c36e52d2d4faa7975da3e8d19ba919178ed393f7f83</citedby><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0076157$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0076157$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,24779,27923,37666,38041,40857,41229,41926,42298</link.rule.ids></links><search><contributor>Ławrynowicz, Julian</contributor><creatorcontrib>Pawłucki, Wiesław</creatorcontrib><title>Quasi-regular boundary and Stokes' formula for a sub-analytic leaf</title><title>Seminar on Deformations</title><description>The aim of this paper is to prove some differential properties of sub-analytic leaves related to the conditions of Whitney, and to derive Stokes' formula for sub-analytic leaves.</description><subject>Analytic Submanifold</subject><subject>Real Finite Dimensional Vector Space</subject><subject>Regular Boundary Point</subject><subject>Regular Point</subject><subject>Topological Component</subject><issn>0075-8434</issn><issn>1617-9692</issn><isbn>3540160507</isbn><isbn>9783540160502</isbn><isbn>3540397345</isbn><isbn>9783540397342</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFkL1OwzAYRc2fRChdeAJvsBj8_9kjrSggVUKI7tGX2K5KQ4LiZujbN1WRmM5wru5wCLkT_FFwDk-zRTXCCgNn5EYZzZUHpc05KYQVwLz18uIkhOWGwyUpxr1hTit9TaY5f3M-KnBWyILMPgfMG9bH9dBgT6tuaAP2e4ptoF-7bhvzPU1d_zPaIynSPFQMW2z2u01Nm4jpllwlbHKc_nFCVouX1fyNLT9e3-fPS1aDBqa51xUaLzE4UydpEZyRtbLRyCCDTojgwQRU0QXhK_TCC3AxKK8SJKcm5OF0m3_7TbuOfVl13TaXgpfHLuV_F3UAvCxPsQ</recordid><startdate>20060917</startdate><enddate>20060917</enddate><creator>Pawłucki, Wiesław</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20060917</creationdate><title>Quasi-regular boundary and Stokes' formula for a sub-analytic leaf</title><author>Pawłucki, Wiesław</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c747-4094ba592ad85cf26a7852c36e52d2d4faa7975da3e8d19ba919178ed393f7f83</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analytic Submanifold</topic><topic>Real Finite Dimensional Vector Space</topic><topic>Regular Boundary Point</topic><topic>Regular Point</topic><topic>Topological Component</topic><toplevel>online_resources</toplevel><creatorcontrib>Pawłucki, Wiesław</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pawłucki, Wiesław</au><au>Ławrynowicz, Julian</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Quasi-regular boundary and Stokes' formula for a sub-analytic leaf</atitle><btitle>Seminar on Deformations</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2006-09-17</date><risdate>2006</risdate><spage>235</spage><epage>252</epage><pages>235-252</pages><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>3540160507</isbn><isbn>9783540160502</isbn><eisbn>3540397345</eisbn><eisbn>9783540397342</eisbn><abstract>The aim of this paper is to prove some differential properties of sub-analytic leaves related to the conditions of Whitney, and to derive Stokes' formula for sub-analytic leaves.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0076157</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0075-8434
ispartof Seminar on Deformations, 2006, p.235-252
issn 0075-8434
1617-9692
language eng
recordid cdi_springer_books_10_1007_BFb0076157
source SpringerLink Books Lecture Notes In Mathematics Archive; Springer Nature - Springer Lecture Notes in Mathematics eBooks; SpringerLINK Lecture Notes in Mathematics Archive (Through 1996)
subjects Analytic Submanifold
Real Finite Dimensional Vector Space
Regular Boundary Point
Regular Point
Topological Component
title Quasi-regular boundary and Stokes' formula for a sub-analytic leaf
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Quasi-regular%20boundary%20and%20Stokes'%20formula%20for%20a%20sub-analytic%20leaf&rft.btitle=Seminar%20on%20Deformations&rft.au=Paw%C5%82ucki,%20Wies%C5%82aw&rft.date=2006-09-17&rft.spage=235&rft.epage=252&rft.pages=235-252&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=3540160507&rft.isbn_list=9783540160502&rft_id=info:doi/10.1007/BFb0076157&rft.eisbn=3540397345&rft.eisbn_list=9783540397342&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0076157%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c747-4094ba592ad85cf26a7852c36e52d2d4faa7975da3e8d19ba919178ed393f7f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true