Loading…
On a numerical method for fracture mechanics
The energy release rate, G, is the derivative of the energy with respect to the crack length. Using Lagrangian coordinates, we can derive an expression of G as a surface integral, which is mathematically equivalent to other well known expressions as the J integral of Rice or the expression in terms...
Saved in:
Main Authors: | , , |
---|---|
Format: | Book Chapter |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c743-37669e7eb3484ada84beaf48139f40069c19915a0c891b04fcef5ea50fc32ab83 |
---|---|
cites | |
container_end_page | 84 |
container_issue | |
container_start_page | 69 |
container_title | |
container_volume | |
creator | Destuynder, P. Djaoua, M. Lescure, S. |
description | The energy release rate, G, is the derivative of the energy with respect to the crack length. Using Lagrangian coordinates, we can derive an expression of G as a surface integral, which is mathematically equivalent to other well known expressions as the J integral of Rice or the expression in terms of stress intensity factors. Using interior error estimates, we derive an error estimate of O (h l−ɛ) on G by using piecewise linear elements. For sake of simplicity, we present these estimates for the Laplace operator. The numerical trials, which show a very good stability of the method, were performed for the elasticity system. |
doi_str_mv | 10.1007/BFb0076263 |
format | book_chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0076263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0076263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c743-37669e7eb3484ada84beaf48139f40069c19915a0c891b04fcef5ea50fc32ab83</originalsourceid><addsrcrecordid>eNpFkMtOwzAURM1LIirZ8AVZsiDg6-vXXUJFAalSN91HtmvTQJsgu_1_gkAwm5FmNGcxjF0DvwPOzf3jwk-mhcYTVpOxqCRHQmPglFWgwbSkSZz9daAEkDxn1bRSrZUoL1ldyjufhEJrTRW7XQ2Na4bjPuY-uF2zj4ftuGnSmJuUXTgcc5yysHVDH8oVu0huV2L96zO2Xjyt5y_tcvX8On9YtsFIbNFM5GiiR2ml2zgrfXRJWkBKknNNAYhAOR4sgecyhZhUdIqngMJ5izN284Mtn7kf3mLu_Dh-lA549_1D9_8DfgFtDEkW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>On a numerical method for fracture mechanics</title><source>SpringerLink Books Lecture Notes In Mathematics Archive</source><source>Springer Nature - Springer Lecture Notes in Mathematics eBooks</source><source>SpringerLINK Lecture Notes in Mathematics Archive (Through 1996)</source><creator>Destuynder, P. ; Djaoua, M. ; Lescure, S.</creator><contributor>Wendland, Wolfgang L. ; Whiteman, John R. ; Grisvard, Pierre</contributor><creatorcontrib>Destuynder, P. ; Djaoua, M. ; Lescure, S. ; Wendland, Wolfgang L. ; Whiteman, John R. ; Grisvard, Pierre</creatorcontrib><description>The energy release rate, G, is the derivative of the energy with respect to the crack length. Using Lagrangian coordinates, we can derive an expression of G as a surface integral, which is mathematically equivalent to other well known expressions as the J integral of Rice or the expression in terms of stress intensity factors. Using interior error estimates, we derive an error estimate of O (h l−ɛ) on G by using piecewise linear elements. For sake of simplicity, we present these estimates for the Laplace operator. The numerical trials, which show a very good stability of the method, were performed for the elasticity system.</description><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 9783540152194</identifier><identifier>ISBN: 3540152199</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 9783540393771</identifier><identifier>EISBN: 3540393773</identifier><identifier>DOI: 10.1007/BFb0076263</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><ispartof>Singularities and Constructive Methods for Their Treatment, 2006, p.69-84</ispartof><rights>Springer-Verlag 1985</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c743-37669e7eb3484ada84beaf48139f40069c19915a0c891b04fcef5ea50fc32ab83</citedby><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0076263$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0076263$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,37668,38043,40859,41231,41928,42300</link.rule.ids></links><search><contributor>Wendland, Wolfgang L.</contributor><contributor>Whiteman, John R.</contributor><contributor>Grisvard, Pierre</contributor><creatorcontrib>Destuynder, P.</creatorcontrib><creatorcontrib>Djaoua, M.</creatorcontrib><creatorcontrib>Lescure, S.</creatorcontrib><title>On a numerical method for fracture mechanics</title><title>Singularities and Constructive Methods for Their Treatment</title><description>The energy release rate, G, is the derivative of the energy with respect to the crack length. Using Lagrangian coordinates, we can derive an expression of G as a surface integral, which is mathematically equivalent to other well known expressions as the J integral of Rice or the expression in terms of stress intensity factors. Using interior error estimates, we derive an error estimate of O (h l−ɛ) on G by using piecewise linear elements. For sake of simplicity, we present these estimates for the Laplace operator. The numerical trials, which show a very good stability of the method, were performed for the elasticity system.</description><issn>0075-8434</issn><issn>1617-9692</issn><isbn>9783540152194</isbn><isbn>3540152199</isbn><isbn>9783540393771</isbn><isbn>3540393773</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFkMtOwzAURM1LIirZ8AVZsiDg6-vXXUJFAalSN91HtmvTQJsgu_1_gkAwm5FmNGcxjF0DvwPOzf3jwk-mhcYTVpOxqCRHQmPglFWgwbSkSZz9daAEkDxn1bRSrZUoL1ldyjufhEJrTRW7XQ2Na4bjPuY-uF2zj4ftuGnSmJuUXTgcc5yysHVDH8oVu0huV2L96zO2Xjyt5y_tcvX8On9YtsFIbNFM5GiiR2ml2zgrfXRJWkBKknNNAYhAOR4sgecyhZhUdIqngMJ5izN284Mtn7kf3mLu_Dh-lA549_1D9_8DfgFtDEkW</recordid><startdate>20060917</startdate><enddate>20060917</enddate><creator>Destuynder, P.</creator><creator>Djaoua, M.</creator><creator>Lescure, S.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20060917</creationdate><title>On a numerical method for fracture mechanics</title><author>Destuynder, P. ; Djaoua, M. ; Lescure, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c743-37669e7eb3484ada84beaf48139f40069c19915a0c891b04fcef5ea50fc32ab83</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Destuynder, P.</creatorcontrib><creatorcontrib>Djaoua, M.</creatorcontrib><creatorcontrib>Lescure, S.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Destuynder, P.</au><au>Djaoua, M.</au><au>Lescure, S.</au><au>Wendland, Wolfgang L.</au><au>Whiteman, John R.</au><au>Grisvard, Pierre</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>On a numerical method for fracture mechanics</atitle><btitle>Singularities and Constructive Methods for Their Treatment</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2006-09-17</date><risdate>2006</risdate><spage>69</spage><epage>84</epage><pages>69-84</pages><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>9783540152194</isbn><isbn>3540152199</isbn><eisbn>9783540393771</eisbn><eisbn>3540393773</eisbn><abstract>The energy release rate, G, is the derivative of the energy with respect to the crack length. Using Lagrangian coordinates, we can derive an expression of G as a surface integral, which is mathematically equivalent to other well known expressions as the J integral of Rice or the expression in terms of stress intensity factors. Using interior error estimates, we derive an error estimate of O (h l−ɛ) on G by using piecewise linear elements. For sake of simplicity, we present these estimates for the Laplace operator. The numerical trials, which show a very good stability of the method, were performed for the elasticity system.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0076263</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-8434 |
ispartof | Singularities and Constructive Methods for Their Treatment, 2006, p.69-84 |
issn | 0075-8434 1617-9692 |
language | eng |
recordid | cdi_springer_books_10_1007_BFb0076263 |
source | SpringerLink Books Lecture Notes In Mathematics Archive; Springer Nature - Springer Lecture Notes in Mathematics eBooks; SpringerLINK Lecture Notes in Mathematics Archive (Through 1996) |
title | On a numerical method for fracture mechanics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=On%20a%20numerical%20method%20for%20fracture%20mechanics&rft.btitle=Singularities%20and%20Constructive%20Methods%20for%20Their%20Treatment&rft.au=Destuynder,%20P.&rft.date=2006-09-17&rft.spage=69&rft.epage=84&rft.pages=69-84&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=9783540152194&rft.isbn_list=3540152199&rft_id=info:doi/10.1007/BFb0076263&rft.eisbn=9783540393771&rft.eisbn_list=3540393773&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0076263%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c743-37669e7eb3484ada84beaf48139f40069c19915a0c891b04fcef5ea50fc32ab83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |