Loading…

On a numerical method for fracture mechanics

The energy release rate, G, is the derivative of the energy with respect to the crack length. Using Lagrangian coordinates, we can derive an expression of G as a surface integral, which is mathematically equivalent to other well known expressions as the J integral of Rice or the expression in terms...

Full description

Saved in:
Bibliographic Details
Main Authors: Destuynder, P., Djaoua, M., Lescure, S.
Format: Book Chapter
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c743-37669e7eb3484ada84beaf48139f40069c19915a0c891b04fcef5ea50fc32ab83
cites
container_end_page 84
container_issue
container_start_page 69
container_title
container_volume
creator Destuynder, P.
Djaoua, M.
Lescure, S.
description The energy release rate, G, is the derivative of the energy with respect to the crack length. Using Lagrangian coordinates, we can derive an expression of G as a surface integral, which is mathematically equivalent to other well known expressions as the J integral of Rice or the expression in terms of stress intensity factors. Using interior error estimates, we derive an error estimate of O (h l−ɛ) on G by using piecewise linear elements. For sake of simplicity, we present these estimates for the Laplace operator. The numerical trials, which show a very good stability of the method, were performed for the elasticity system.
doi_str_mv 10.1007/BFb0076263
format book_chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0076263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0076263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c743-37669e7eb3484ada84beaf48139f40069c19915a0c891b04fcef5ea50fc32ab83</originalsourceid><addsrcrecordid>eNpFkMtOwzAURM1LIirZ8AVZsiDg6-vXXUJFAalSN91HtmvTQJsgu_1_gkAwm5FmNGcxjF0DvwPOzf3jwk-mhcYTVpOxqCRHQmPglFWgwbSkSZz9daAEkDxn1bRSrZUoL1ldyjufhEJrTRW7XQ2Na4bjPuY-uF2zj4ftuGnSmJuUXTgcc5yysHVDH8oVu0huV2L96zO2Xjyt5y_tcvX8On9YtsFIbNFM5GiiR2ml2zgrfXRJWkBKknNNAYhAOR4sgecyhZhUdIqngMJ5izN284Mtn7kf3mLu_Dh-lA549_1D9_8DfgFtDEkW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>On a numerical method for fracture mechanics</title><source>SpringerLink Books Lecture Notes In Mathematics Archive</source><source>Springer Nature - Springer Lecture Notes in Mathematics eBooks</source><source>SpringerLINK Lecture Notes in Mathematics Archive (Through 1996)</source><creator>Destuynder, P. ; Djaoua, M. ; Lescure, S.</creator><contributor>Wendland, Wolfgang L. ; Whiteman, John R. ; Grisvard, Pierre</contributor><creatorcontrib>Destuynder, P. ; Djaoua, M. ; Lescure, S. ; Wendland, Wolfgang L. ; Whiteman, John R. ; Grisvard, Pierre</creatorcontrib><description>The energy release rate, G, is the derivative of the energy with respect to the crack length. Using Lagrangian coordinates, we can derive an expression of G as a surface integral, which is mathematically equivalent to other well known expressions as the J integral of Rice or the expression in terms of stress intensity factors. Using interior error estimates, we derive an error estimate of O (h l−ɛ) on G by using piecewise linear elements. For sake of simplicity, we present these estimates for the Laplace operator. The numerical trials, which show a very good stability of the method, were performed for the elasticity system.</description><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 9783540152194</identifier><identifier>ISBN: 3540152199</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 9783540393771</identifier><identifier>EISBN: 3540393773</identifier><identifier>DOI: 10.1007/BFb0076263</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><ispartof>Singularities and Constructive Methods for Their Treatment, 2006, p.69-84</ispartof><rights>Springer-Verlag 1985</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c743-37669e7eb3484ada84beaf48139f40069c19915a0c891b04fcef5ea50fc32ab83</citedby><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0076263$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0076263$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,37668,38043,40859,41231,41928,42300</link.rule.ids></links><search><contributor>Wendland, Wolfgang L.</contributor><contributor>Whiteman, John R.</contributor><contributor>Grisvard, Pierre</contributor><creatorcontrib>Destuynder, P.</creatorcontrib><creatorcontrib>Djaoua, M.</creatorcontrib><creatorcontrib>Lescure, S.</creatorcontrib><title>On a numerical method for fracture mechanics</title><title>Singularities and Constructive Methods for Their Treatment</title><description>The energy release rate, G, is the derivative of the energy with respect to the crack length. Using Lagrangian coordinates, we can derive an expression of G as a surface integral, which is mathematically equivalent to other well known expressions as the J integral of Rice or the expression in terms of stress intensity factors. Using interior error estimates, we derive an error estimate of O (h l−ɛ) on G by using piecewise linear elements. For sake of simplicity, we present these estimates for the Laplace operator. The numerical trials, which show a very good stability of the method, were performed for the elasticity system.</description><issn>0075-8434</issn><issn>1617-9692</issn><isbn>9783540152194</isbn><isbn>3540152199</isbn><isbn>9783540393771</isbn><isbn>3540393773</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFkMtOwzAURM1LIirZ8AVZsiDg6-vXXUJFAalSN91HtmvTQJsgu_1_gkAwm5FmNGcxjF0DvwPOzf3jwk-mhcYTVpOxqCRHQmPglFWgwbSkSZz9daAEkDxn1bRSrZUoL1ldyjufhEJrTRW7XQ2Na4bjPuY-uF2zj4ftuGnSmJuUXTgcc5yysHVDH8oVu0huV2L96zO2Xjyt5y_tcvX8On9YtsFIbNFM5GiiR2ml2zgrfXRJWkBKknNNAYhAOR4sgecyhZhUdIqngMJ5izN284Mtn7kf3mLu_Dh-lA549_1D9_8DfgFtDEkW</recordid><startdate>20060917</startdate><enddate>20060917</enddate><creator>Destuynder, P.</creator><creator>Djaoua, M.</creator><creator>Lescure, S.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20060917</creationdate><title>On a numerical method for fracture mechanics</title><author>Destuynder, P. ; Djaoua, M. ; Lescure, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c743-37669e7eb3484ada84beaf48139f40069c19915a0c891b04fcef5ea50fc32ab83</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Destuynder, P.</creatorcontrib><creatorcontrib>Djaoua, M.</creatorcontrib><creatorcontrib>Lescure, S.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Destuynder, P.</au><au>Djaoua, M.</au><au>Lescure, S.</au><au>Wendland, Wolfgang L.</au><au>Whiteman, John R.</au><au>Grisvard, Pierre</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>On a numerical method for fracture mechanics</atitle><btitle>Singularities and Constructive Methods for Their Treatment</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2006-09-17</date><risdate>2006</risdate><spage>69</spage><epage>84</epage><pages>69-84</pages><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>9783540152194</isbn><isbn>3540152199</isbn><eisbn>9783540393771</eisbn><eisbn>3540393773</eisbn><abstract>The energy release rate, G, is the derivative of the energy with respect to the crack length. Using Lagrangian coordinates, we can derive an expression of G as a surface integral, which is mathematically equivalent to other well known expressions as the J integral of Rice or the expression in terms of stress intensity factors. Using interior error estimates, we derive an error estimate of O (h l−ɛ) on G by using piecewise linear elements. For sake of simplicity, we present these estimates for the Laplace operator. The numerical trials, which show a very good stability of the method, were performed for the elasticity system.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0076263</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0075-8434
ispartof Singularities and Constructive Methods for Their Treatment, 2006, p.69-84
issn 0075-8434
1617-9692
language eng
recordid cdi_springer_books_10_1007_BFb0076263
source SpringerLink Books Lecture Notes In Mathematics Archive; Springer Nature - Springer Lecture Notes in Mathematics eBooks; SpringerLINK Lecture Notes in Mathematics Archive (Through 1996)
title On a numerical method for fracture mechanics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=On%20a%20numerical%20method%20for%20fracture%20mechanics&rft.btitle=Singularities%20and%20Constructive%20Methods%20for%20Their%20Treatment&rft.au=Destuynder,%20P.&rft.date=2006-09-17&rft.spage=69&rft.epage=84&rft.pages=69-84&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=9783540152194&rft.isbn_list=3540152199&rft_id=info:doi/10.1007/BFb0076263&rft.eisbn=9783540393771&rft.eisbn_list=3540393773&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0076263%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c743-37669e7eb3484ada84beaf48139f40069c19915a0c891b04fcef5ea50fc32ab83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true