Loading…
Large deviations for multiple Wiener-Itô integral processes
For m≥1 let Im(h) denote the multiple Wiener-Itô integral of order m of a square integrable symmetric kernel h. In this paper we consider different conditions on a time-dependent family of kernels {ht, 0≤t≤1} which guarantee that the process Im(ht) has continuous sample paths and that the probabilit...
Saved in:
Main Authors: | , , |
---|---|
Format: | Book Chapter |
Language: | eng ; jpn |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 31 |
container_issue | |
container_start_page | 11 |
container_title | |
container_volume | |
creator | Mayer-Wolf, Eduardo Nualart, David Pérez-Abreu, Victor |
description | For m≥1 let Im(h) denote the multiple Wiener-Itô integral of order m of a square integrable symmetric kernel h. In this paper we consider different conditions on a time-dependent family of kernels {ht, 0≤t≤1} which guarantee that the process Im(ht) has continuous sample paths and that the probability measures induced by εm/2Im(ht) satisfy a large deviations principle in C([0,1]). |
doi_str_mv | 10.1007/BFb0084307 |
format | book_chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0084307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0084307</sourcerecordid><originalsourceid>FETCH-LOGICAL-j1357-eece04d7870cbcba9086086a89f35d458ebe422dcfcc8e1e54a28d5af41739913</originalsourceid><addsrcrecordid>eNpFkM1KxDAUheMf2Bnd-ARZuqneJDdNCm50cHSg4EZxWdL0tnSsbUmqT-Yb-GKOjCAcOIvDdxYfYxcCrgSAub5bVwAWFZgDtlAaAY1CiYcsEZkwaZ7l8mg_6AykEMcs2WE63SF4yhYxbgGkRoSE3RQutMRr-uzc3I1D5M0Y-PtHP3dTT_y1o4FCupm_v3g3zNQG1_MpjJ5ipHjGThrXRzr_6yV7Wd8_rx7T4ulhs7ot0q1Q2qREngBrYw34ylcuB5vt4mzeKF2jtlQRSln7xntLgjQ6aWvtGhRG5blQS3a5_41T6IaWQlmN41ssBZS_Psp_H-oHLSpO3Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Large deviations for multiple Wiener-Itô integral processes</title><source>SpringerLink Books Lecture Notes In Mathematics Archive</source><source>Springer Nature - Springer Lecture Notes in Mathematics eBooks</source><source>SpringerLINK Lecture Notes in Mathematics Archive (Through 1996)</source><creator>Mayer-Wolf, Eduardo ; Nualart, David ; Pérez-Abreu, Victor</creator><contributor>Meyer, Paul André ; Yor, Marc ; Azéma, Jacques</contributor><creatorcontrib>Mayer-Wolf, Eduardo ; Nualart, David ; Pérez-Abreu, Victor ; Meyer, Paul André ; Yor, Marc ; Azéma, Jacques</creatorcontrib><description>For m≥1 let Im(h) denote the multiple Wiener-Itô integral of order m of a square integrable symmetric kernel h. In this paper we consider different conditions on a time-dependent family of kernels {ht, 0≤t≤1} which guarantee that the process Im(ht) has continuous sample paths and that the probability measures induced by εm/2Im(ht) satisfy a large deviations principle in C([0,1]).</description><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 3540560211</identifier><identifier>ISBN: 9783540560210</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 3540473424</identifier><identifier>EISBN: 9783540473428</identifier><identifier>DOI: 10.1007/BFb0084307</identifier><language>eng ; jpn</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>60F10 ; 60G17 ; AMS 1985 Subject Classification ; Hu-Meyer formula ; Large Deviations ; Multiple integral processes</subject><ispartof>Séminaire de Probabilités XXVI, 2006, p.11-31</ispartof><rights>Springer-Verlag 1992</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0084307$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0084307$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27924,37667,38042,40858,41230,41927,42299</link.rule.ids></links><search><contributor>Meyer, Paul André</contributor><contributor>Yor, Marc</contributor><contributor>Azéma, Jacques</contributor><creatorcontrib>Mayer-Wolf, Eduardo</creatorcontrib><creatorcontrib>Nualart, David</creatorcontrib><creatorcontrib>Pérez-Abreu, Victor</creatorcontrib><title>Large deviations for multiple Wiener-Itô integral processes</title><title>Séminaire de Probabilités XXVI</title><description>For m≥1 let Im(h) denote the multiple Wiener-Itô integral of order m of a square integrable symmetric kernel h. In this paper we consider different conditions on a time-dependent family of kernels {ht, 0≤t≤1} which guarantee that the process Im(ht) has continuous sample paths and that the probability measures induced by εm/2Im(ht) satisfy a large deviations principle in C([0,1]).</description><subject>60F10</subject><subject>60G17</subject><subject>AMS 1985 Subject Classification</subject><subject>Hu-Meyer formula</subject><subject>Large Deviations</subject><subject>Multiple integral processes</subject><issn>0075-8434</issn><issn>1617-9692</issn><isbn>3540560211</isbn><isbn>9783540560210</isbn><isbn>3540473424</isbn><isbn>9783540473428</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFkM1KxDAUheMf2Bnd-ARZuqneJDdNCm50cHSg4EZxWdL0tnSsbUmqT-Yb-GKOjCAcOIvDdxYfYxcCrgSAub5bVwAWFZgDtlAaAY1CiYcsEZkwaZ7l8mg_6AykEMcs2WE63SF4yhYxbgGkRoSE3RQutMRr-uzc3I1D5M0Y-PtHP3dTT_y1o4FCupm_v3g3zNQG1_MpjJ5ipHjGThrXRzr_6yV7Wd8_rx7T4ulhs7ot0q1Q2qREngBrYw34ylcuB5vt4mzeKF2jtlQRSln7xntLgjQ6aWvtGhRG5blQS3a5_41T6IaWQlmN41ssBZS_Psp_H-oHLSpO3Q</recordid><startdate>20060929</startdate><enddate>20060929</enddate><creator>Mayer-Wolf, Eduardo</creator><creator>Nualart, David</creator><creator>Pérez-Abreu, Victor</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20060929</creationdate><title>Large deviations for multiple Wiener-Itô integral processes</title><author>Mayer-Wolf, Eduardo ; Nualart, David ; Pérez-Abreu, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j1357-eece04d7870cbcba9086086a89f35d458ebe422dcfcc8e1e54a28d5af41739913</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng ; jpn</language><creationdate>2006</creationdate><topic>60F10</topic><topic>60G17</topic><topic>AMS 1985 Subject Classification</topic><topic>Hu-Meyer formula</topic><topic>Large Deviations</topic><topic>Multiple integral processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Mayer-Wolf, Eduardo</creatorcontrib><creatorcontrib>Nualart, David</creatorcontrib><creatorcontrib>Pérez-Abreu, Victor</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayer-Wolf, Eduardo</au><au>Nualart, David</au><au>Pérez-Abreu, Victor</au><au>Meyer, Paul André</au><au>Yor, Marc</au><au>Azéma, Jacques</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Large deviations for multiple Wiener-Itô integral processes</atitle><btitle>Séminaire de Probabilités XXVI</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2006-09-29</date><risdate>2006</risdate><spage>11</spage><epage>31</epage><pages>11-31</pages><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>3540560211</isbn><isbn>9783540560210</isbn><eisbn>3540473424</eisbn><eisbn>9783540473428</eisbn><abstract>For m≥1 let Im(h) denote the multiple Wiener-Itô integral of order m of a square integrable symmetric kernel h. In this paper we consider different conditions on a time-dependent family of kernels {ht, 0≤t≤1} which guarantee that the process Im(ht) has continuous sample paths and that the probability measures induced by εm/2Im(ht) satisfy a large deviations principle in C([0,1]).</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0084307</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-8434 |
ispartof | Séminaire de Probabilités XXVI, 2006, p.11-31 |
issn | 0075-8434 1617-9692 |
language | eng ; jpn |
recordid | cdi_springer_books_10_1007_BFb0084307 |
source | SpringerLink Books Lecture Notes In Mathematics Archive; Springer Nature - Springer Lecture Notes in Mathematics eBooks; SpringerLINK Lecture Notes in Mathematics Archive (Through 1996) |
subjects | 60F10 60G17 AMS 1985 Subject Classification Hu-Meyer formula Large Deviations Multiple integral processes |
title | Large deviations for multiple Wiener-Itô integral processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Large%20deviations%20for%20multiple%20Wiener-It%C3%B4%20integral%20processes&rft.btitle=S%C3%A9minaire%20de%20Probabilit%C3%A9s%20XXVI&rft.au=Mayer-Wolf,%20Eduardo&rft.date=2006-09-29&rft.spage=11&rft.epage=31&rft.pages=11-31&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=3540560211&rft.isbn_list=9783540560210&rft_id=info:doi/10.1007/BFb0084307&rft.eisbn=3540473424&rft.eisbn_list=9783540473428&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0084307%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j1357-eece04d7870cbcba9086086a89f35d458ebe422dcfcc8e1e54a28d5af41739913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |