Loading…

Enumeration of labelled digraphs and hypergraphs

We present formulae for the number of labelled k-colored hypergraphs, labelled strongly k-colored hypergraphs, labelled connected hypergraphs, labelled even digraphs and labelled even hypergraphs. We refer to [1] and [2] for the basic definitions. The degree of a vertex v of a hypergraph is the numb...

Full description

Saved in:
Bibliographic Details
Main Authors: Hegde, Malati, Sridharan, M. R.
Format: Book Chapter
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 283
container_issue
container_start_page 276
container_title
container_volume
creator Hegde, Malati
Sridharan, M. R.
description We present formulae for the number of labelled k-colored hypergraphs, labelled strongly k-colored hypergraphs, labelled connected hypergraphs, labelled even digraphs and labelled even hypergraphs. We refer to [1] and [2] for the basic definitions. The degree of a vertex v of a hypergraph is the number of edges Ei of H such that v is in Ei. A hypergraph H is even if every vertex of H has even degree. In an even digraph the sum of indegree and outdegree of every vertex is even. R.C. Read [4] has counted the number of k-colored graphs. Here we generalize this result by extending Read’s method to obtain the formula for the number of labelled k-colored and strongly k-colored hypergraphs.
doi_str_mv 10.1007/BFb0092271
format book_chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0092271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0092271</sourcerecordid><originalsourceid>FETCH-springer_books_10_1007_BFb00922713</originalsourceid><addsrcrecordid>eNqVjs0OgjAQhNe_RKJcfIIevaC7LVh71WB8AO9NCUVRBNLqwbcXo9Gzc5lMZib5AGaEC0KUy80uQ1ScS-pBqORaJDHGEoUUfQhoRTJSK8UH346IEqIhBN05idaxiMcQen_GToKT4jIATOv71TpzK5uaNQWrTGaryuYsL4_OtCfPTJ2z06O17p2nMCpM5W348QnMd-lhu49868r6aJ3OmubiNaF-QesftPhj-gTC9kAu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Enumeration of labelled digraphs and hypergraphs</title><source>SpringerLink Books Lecture Notes In Mathematics Archive</source><source>Springer Nature - Springer Lecture Notes in Mathematics eBooks</source><source>SpringerLINK Lecture Notes in Mathematics Archive (Through 1996)</source><creator>Hegde, Malati ; Sridharan, M. R.</creator><contributor>Rao, Siddani Bhaskara</contributor><creatorcontrib>Hegde, Malati ; Sridharan, M. R. ; Rao, Siddani Bhaskara</creatorcontrib><description>We present formulae for the number of labelled k-colored hypergraphs, labelled strongly k-colored hypergraphs, labelled connected hypergraphs, labelled even digraphs and labelled even hypergraphs. We refer to [1] and [2] for the basic definitions. The degree of a vertex v of a hypergraph is the number of edges Ei of H such that v is in Ei. A hypergraph H is even if every vertex of H has even degree. In an even digraph the sum of indegree and outdegree of every vertex is even. R.C. Read [4] has counted the number of k-colored graphs. Here we generalize this result by extending Read’s method to obtain the formula for the number of labelled k-colored and strongly k-colored hypergraphs.</description><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 9783540111511</identifier><identifier>ISBN: 3540111514</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 9783540470373</identifier><identifier>EISBN: 3540470379</identifier><identifier>DOI: 10.1007/BFb0092271</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><ispartof>Combinatorics and Graph Theory, 2006, p.276-283</ispartof><rights>Springer-Verlag 1981</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0092271$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0092271$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,37668,38043,40859,41231,41928,42300</link.rule.ids></links><search><contributor>Rao, Siddani Bhaskara</contributor><creatorcontrib>Hegde, Malati</creatorcontrib><creatorcontrib>Sridharan, M. R.</creatorcontrib><title>Enumeration of labelled digraphs and hypergraphs</title><title>Combinatorics and Graph Theory</title><description>We present formulae for the number of labelled k-colored hypergraphs, labelled strongly k-colored hypergraphs, labelled connected hypergraphs, labelled even digraphs and labelled even hypergraphs. We refer to [1] and [2] for the basic definitions. The degree of a vertex v of a hypergraph is the number of edges Ei of H such that v is in Ei. A hypergraph H is even if every vertex of H has even degree. In an even digraph the sum of indegree and outdegree of every vertex is even. R.C. Read [4] has counted the number of k-colored graphs. Here we generalize this result by extending Read’s method to obtain the formula for the number of labelled k-colored and strongly k-colored hypergraphs.</description><issn>0075-8434</issn><issn>1617-9692</issn><isbn>9783540111511</isbn><isbn>3540111514</isbn><isbn>9783540470373</isbn><isbn>3540470379</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNqVjs0OgjAQhNe_RKJcfIIevaC7LVh71WB8AO9NCUVRBNLqwbcXo9Gzc5lMZib5AGaEC0KUy80uQ1ScS-pBqORaJDHGEoUUfQhoRTJSK8UH346IEqIhBN05idaxiMcQen_GToKT4jIATOv71TpzK5uaNQWrTGaryuYsL4_OtCfPTJ2z06O17p2nMCpM5W348QnMd-lhu49868r6aJ3OmubiNaF-QesftPhj-gTC9kAu</recordid><startdate>20061009</startdate><enddate>20061009</enddate><creator>Hegde, Malati</creator><creator>Sridharan, M. R.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20061009</creationdate><title>Enumeration of labelled digraphs and hypergraphs</title><author>Hegde, Malati ; Sridharan, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-springer_books_10_1007_BFb00922713</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hegde, Malati</creatorcontrib><creatorcontrib>Sridharan, M. R.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hegde, Malati</au><au>Sridharan, M. R.</au><au>Rao, Siddani Bhaskara</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Enumeration of labelled digraphs and hypergraphs</atitle><btitle>Combinatorics and Graph Theory</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2006-10-09</date><risdate>2006</risdate><spage>276</spage><epage>283</epage><pages>276-283</pages><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>9783540111511</isbn><isbn>3540111514</isbn><eisbn>9783540470373</eisbn><eisbn>3540470379</eisbn><abstract>We present formulae for the number of labelled k-colored hypergraphs, labelled strongly k-colored hypergraphs, labelled connected hypergraphs, labelled even digraphs and labelled even hypergraphs. We refer to [1] and [2] for the basic definitions. The degree of a vertex v of a hypergraph is the number of edges Ei of H such that v is in Ei. A hypergraph H is even if every vertex of H has even degree. In an even digraph the sum of indegree and outdegree of every vertex is even. R.C. Read [4] has counted the number of k-colored graphs. Here we generalize this result by extending Read’s method to obtain the formula for the number of labelled k-colored and strongly k-colored hypergraphs.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0092271</doi></addata></record>
fulltext fulltext
identifier ISSN: 0075-8434
ispartof Combinatorics and Graph Theory, 2006, p.276-283
issn 0075-8434
1617-9692
language eng
recordid cdi_springer_books_10_1007_BFb0092271
source SpringerLink Books Lecture Notes In Mathematics Archive; Springer Nature - Springer Lecture Notes in Mathematics eBooks; SpringerLINK Lecture Notes in Mathematics Archive (Through 1996)
title Enumeration of labelled digraphs and hypergraphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Enumeration%20of%20labelled%20digraphs%20and%20hypergraphs&rft.btitle=Combinatorics%20and%20Graph%20Theory&rft.au=Hegde,%20Malati&rft.date=2006-10-09&rft.spage=276&rft.epage=283&rft.pages=276-283&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=9783540111511&rft.isbn_list=3540111514&rft_id=info:doi/10.1007/BFb0092271&rft.eisbn=9783540470373&rft.eisbn_list=3540470379&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0092271%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-springer_books_10_1007_BFb00922713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true