Loading…

Improved ℓ1-tracker using robust PCA and random projection

In this paper, we propose an improved ℓ 1 -tracker in a particle filter framework using robust principal component analysis (robust PCA) and random projection. At first we redesign the template set and its update scheme. Three target templates and several background templates combined with the trivi...

Full description

Saved in:
Bibliographic Details
Published in:Machine vision and applications 2016, Vol.27 (4), p.577-583
Main Authors: Shan, Dongjing, Chao, Zhang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-g841-57e036192a5981be47a201d83cea59b0549f1e6020846070b00816dc399d25f43
container_end_page 583
container_issue 4
container_start_page 577
container_title Machine vision and applications
container_volume 27
creator Shan, Dongjing
Chao, Zhang
description In this paper, we propose an improved ℓ 1 -tracker in a particle filter framework using robust principal component analysis (robust PCA) and random projection. At first we redesign the template set and its update scheme. Three target templates and several background templates combined with the trivial templates are used to represent the candidate images sparsely. One fixed target template is generated from the image patch in the first frame. The other two are dynamic target templates, called stable target template, and fast changing one used for long time and short time, respectively. Robust PCA is used to generate and update the stable target template, and fast changing target template is initialized by the stable one at certain times. The background templates are used to strengthen the ability of distinguishing background and foreground. Then, the large set of Haar-like features are extracted and compressively sensed with a very sparse measurement matrix for the ℓ 1 -tracker framework. The compressive sensing theories ensure that the sensed features preserve almost all the information of the original features. Our proposed method is more robust than the original ℓ 1 -method. Experiments have been done on numerous sequences to demonstrate the better performance of our improved tracker.
doi_str_mv 10.1007/s00138-016-0750-1
format article
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_journals_10_1007_s00138_016_0750_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00138_016_0750_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-g841-57e036192a5981be47a201d83cea59b0549f1e6020846070b00816dc399d25f43</originalsourceid><addsrcrecordid>eNotj01OwzAQhS0EEqFwAHa-gGHGdvwjsakioJUqwaJ7y0mcqoEmlZ1wAm7ADTkJrspmZvT0NO99hNwjPCCAfkwAKAwDVAx0CQwvSIFScIZa2UtSgM23AcuvyU1KPQBIrWVBntaHYxy_Qkt_v3-QTdE3HyHSOe2HHY1jPaeJvldL6oeWxjzGA83-PjTTfhxuyVXnP1O4-98Lsn153lYrtnl7XVfLDdsZiazUAYRCy31pDdZBas8BWyOakJUaSmk7DAo4GKlAQw1gULWNsLblZSfFgvDz23SMuVaIrh_nOOREh-BO-O6M7zK-O-E7FH-8U0xq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved ℓ1-tracker using robust PCA and random projection</title><source>Springer Link</source><creator>Shan, Dongjing ; Chao, Zhang</creator><creatorcontrib>Shan, Dongjing ; Chao, Zhang</creatorcontrib><description>In this paper, we propose an improved ℓ 1 -tracker in a particle filter framework using robust principal component analysis (robust PCA) and random projection. At first we redesign the template set and its update scheme. Three target templates and several background templates combined with the trivial templates are used to represent the candidate images sparsely. One fixed target template is generated from the image patch in the first frame. The other two are dynamic target templates, called stable target template, and fast changing one used for long time and short time, respectively. Robust PCA is used to generate and update the stable target template, and fast changing target template is initialized by the stable one at certain times. The background templates are used to strengthen the ability of distinguishing background and foreground. Then, the large set of Haar-like features are extracted and compressively sensed with a very sparse measurement matrix for the ℓ 1 -tracker framework. The compressive sensing theories ensure that the sensed features preserve almost all the information of the original features. Our proposed method is more robust than the original ℓ 1 -method. Experiments have been done on numerous sequences to demonstrate the better performance of our improved tracker.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-016-0750-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Communications Engineering ; Computer Science ; Image Processing and Computer Vision ; Networks ; Pattern Recognition ; Short Paper</subject><ispartof>Machine vision and applications, 2016, Vol.27 (4), p.577-583</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-g841-57e036192a5981be47a201d83cea59b0549f1e6020846070b00816dc399d25f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shan, Dongjing</creatorcontrib><creatorcontrib>Chao, Zhang</creatorcontrib><title>Improved ℓ1-tracker using robust PCA and random projection</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>In this paper, we propose an improved ℓ 1 -tracker in a particle filter framework using robust principal component analysis (robust PCA) and random projection. At first we redesign the template set and its update scheme. Three target templates and several background templates combined with the trivial templates are used to represent the candidate images sparsely. One fixed target template is generated from the image patch in the first frame. The other two are dynamic target templates, called stable target template, and fast changing one used for long time and short time, respectively. Robust PCA is used to generate and update the stable target template, and fast changing target template is initialized by the stable one at certain times. The background templates are used to strengthen the ability of distinguishing background and foreground. Then, the large set of Haar-like features are extracted and compressively sensed with a very sparse measurement matrix for the ℓ 1 -tracker framework. The compressive sensing theories ensure that the sensed features preserve almost all the information of the original features. Our proposed method is more robust than the original ℓ 1 -method. Experiments have been done on numerous sequences to demonstrate the better performance of our improved tracker.</description><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Networks</subject><subject>Pattern Recognition</subject><subject>Short Paper</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotj01OwzAQhS0EEqFwAHa-gGHGdvwjsakioJUqwaJ7y0mcqoEmlZ1wAm7ADTkJrspmZvT0NO99hNwjPCCAfkwAKAwDVAx0CQwvSIFScIZa2UtSgM23AcuvyU1KPQBIrWVBntaHYxy_Qkt_v3-QTdE3HyHSOe2HHY1jPaeJvldL6oeWxjzGA83-PjTTfhxuyVXnP1O4-98Lsn153lYrtnl7XVfLDdsZiazUAYRCy31pDdZBas8BWyOakJUaSmk7DAo4GKlAQw1gULWNsLblZSfFgvDz23SMuVaIrh_nOOREh-BO-O6M7zK-O-E7FH-8U0xq</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Shan, Dongjing</creator><creator>Chao, Zhang</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2016</creationdate><title>Improved ℓ1-tracker using robust PCA and random projection</title><author>Shan, Dongjing ; Chao, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g841-57e036192a5981be47a201d83cea59b0549f1e6020846070b00816dc399d25f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Networks</topic><topic>Pattern Recognition</topic><topic>Short Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Dongjing</creatorcontrib><creatorcontrib>Chao, Zhang</creatorcontrib><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Dongjing</au><au>Chao, Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved ℓ1-tracker using robust PCA and random projection</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2016</date><risdate>2016</risdate><volume>27</volume><issue>4</issue><spage>577</spage><epage>583</epage><pages>577-583</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>In this paper, we propose an improved ℓ 1 -tracker in a particle filter framework using robust principal component analysis (robust PCA) and random projection. At first we redesign the template set and its update scheme. Three target templates and several background templates combined with the trivial templates are used to represent the candidate images sparsely. One fixed target template is generated from the image patch in the first frame. The other two are dynamic target templates, called stable target template, and fast changing one used for long time and short time, respectively. Robust PCA is used to generate and update the stable target template, and fast changing target template is initialized by the stable one at certain times. The background templates are used to strengthen the ability of distinguishing background and foreground. Then, the large set of Haar-like features are extracted and compressively sensed with a very sparse measurement matrix for the ℓ 1 -tracker framework. The compressive sensing theories ensure that the sensed features preserve almost all the information of the original features. Our proposed method is more robust than the original ℓ 1 -method. Experiments have been done on numerous sequences to demonstrate the better performance of our improved tracker.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-016-0750-1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-8092
ispartof Machine vision and applications, 2016, Vol.27 (4), p.577-583
issn 0932-8092
1432-1769
language eng
recordid cdi_springer_journals_10_1007_s00138_016_0750_1
source Springer Link
subjects Communications Engineering
Computer Science
Image Processing and Computer Vision
Networks
Pattern Recognition
Short Paper
title Improved ℓ1-tracker using robust PCA and random projection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20%E2%84%931-tracker%20using%20robust%20PCA%20and%20random%20projection&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Shan,%20Dongjing&rft.date=2016&rft.volume=27&rft.issue=4&rft.spage=577&rft.epage=583&rft.pages=577-583&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-016-0750-1&rft_dat=%3Cspringer%3E10_1007_s00138_016_0750_1%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g841-57e036192a5981be47a201d83cea59b0549f1e6020846070b00816dc399d25f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true