Loading…
Improved ℓ1-tracker using robust PCA and random projection
In this paper, we propose an improved ℓ 1 -tracker in a particle filter framework using robust principal component analysis (robust PCA) and random projection. At first we redesign the template set and its update scheme. Three target templates and several background templates combined with the trivi...
Saved in:
Published in: | Machine vision and applications 2016, Vol.27 (4), p.577-583 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-g841-57e036192a5981be47a201d83cea59b0549f1e6020846070b00816dc399d25f43 |
container_end_page | 583 |
container_issue | 4 |
container_start_page | 577 |
container_title | Machine vision and applications |
container_volume | 27 |
creator | Shan, Dongjing Chao, Zhang |
description | In this paper, we propose an improved
ℓ
1
-tracker in a particle filter framework using robust principal component analysis (robust PCA) and random projection. At first we redesign the template set and its update scheme. Three target templates and several background templates combined with the trivial templates are used to represent the candidate images sparsely. One fixed target template is generated from the image patch in the first frame. The other two are dynamic target templates, called stable target template, and fast changing one used for long time and short time, respectively. Robust PCA is used to generate and update the stable target template, and fast changing target template is initialized by the stable one at certain times. The background templates are used to strengthen the ability of distinguishing background and foreground. Then, the large set of Haar-like features are extracted and compressively sensed with a very sparse measurement matrix for the
ℓ
1
-tracker framework. The compressive sensing theories ensure that the sensed features preserve almost all the information of the original features. Our proposed method is more robust than the original
ℓ
1
-method. Experiments have been done on numerous sequences to demonstrate the better performance of our improved tracker. |
doi_str_mv | 10.1007/s00138-016-0750-1 |
format | article |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_journals_10_1007_s00138_016_0750_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00138_016_0750_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-g841-57e036192a5981be47a201d83cea59b0549f1e6020846070b00816dc399d25f43</originalsourceid><addsrcrecordid>eNotj01OwzAQhS0EEqFwAHa-gGHGdvwjsakioJUqwaJ7y0mcqoEmlZ1wAm7ADTkJrspmZvT0NO99hNwjPCCAfkwAKAwDVAx0CQwvSIFScIZa2UtSgM23AcuvyU1KPQBIrWVBntaHYxy_Qkt_v3-QTdE3HyHSOe2HHY1jPaeJvldL6oeWxjzGA83-PjTTfhxuyVXnP1O4-98Lsn153lYrtnl7XVfLDdsZiazUAYRCy31pDdZBas8BWyOakJUaSmk7DAo4GKlAQw1gULWNsLblZSfFgvDz23SMuVaIrh_nOOREh-BO-O6M7zK-O-E7FH-8U0xq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved ℓ1-tracker using robust PCA and random projection</title><source>Springer Link</source><creator>Shan, Dongjing ; Chao, Zhang</creator><creatorcontrib>Shan, Dongjing ; Chao, Zhang</creatorcontrib><description>In this paper, we propose an improved
ℓ
1
-tracker in a particle filter framework using robust principal component analysis (robust PCA) and random projection. At first we redesign the template set and its update scheme. Three target templates and several background templates combined with the trivial templates are used to represent the candidate images sparsely. One fixed target template is generated from the image patch in the first frame. The other two are dynamic target templates, called stable target template, and fast changing one used for long time and short time, respectively. Robust PCA is used to generate and update the stable target template, and fast changing target template is initialized by the stable one at certain times. The background templates are used to strengthen the ability of distinguishing background and foreground. Then, the large set of Haar-like features are extracted and compressively sensed with a very sparse measurement matrix for the
ℓ
1
-tracker framework. The compressive sensing theories ensure that the sensed features preserve almost all the information of the original features. Our proposed method is more robust than the original
ℓ
1
-method. Experiments have been done on numerous sequences to demonstrate the better performance of our improved tracker.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-016-0750-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Communications Engineering ; Computer Science ; Image Processing and Computer Vision ; Networks ; Pattern Recognition ; Short Paper</subject><ispartof>Machine vision and applications, 2016, Vol.27 (4), p.577-583</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-g841-57e036192a5981be47a201d83cea59b0549f1e6020846070b00816dc399d25f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shan, Dongjing</creatorcontrib><creatorcontrib>Chao, Zhang</creatorcontrib><title>Improved ℓ1-tracker using robust PCA and random projection</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>In this paper, we propose an improved
ℓ
1
-tracker in a particle filter framework using robust principal component analysis (robust PCA) and random projection. At first we redesign the template set and its update scheme. Three target templates and several background templates combined with the trivial templates are used to represent the candidate images sparsely. One fixed target template is generated from the image patch in the first frame. The other two are dynamic target templates, called stable target template, and fast changing one used for long time and short time, respectively. Robust PCA is used to generate and update the stable target template, and fast changing target template is initialized by the stable one at certain times. The background templates are used to strengthen the ability of distinguishing background and foreground. Then, the large set of Haar-like features are extracted and compressively sensed with a very sparse measurement matrix for the
ℓ
1
-tracker framework. The compressive sensing theories ensure that the sensed features preserve almost all the information of the original features. Our proposed method is more robust than the original
ℓ
1
-method. Experiments have been done on numerous sequences to demonstrate the better performance of our improved tracker.</description><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Networks</subject><subject>Pattern Recognition</subject><subject>Short Paper</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotj01OwzAQhS0EEqFwAHa-gGHGdvwjsakioJUqwaJ7y0mcqoEmlZ1wAm7ADTkJrspmZvT0NO99hNwjPCCAfkwAKAwDVAx0CQwvSIFScIZa2UtSgM23AcuvyU1KPQBIrWVBntaHYxy_Qkt_v3-QTdE3HyHSOe2HHY1jPaeJvldL6oeWxjzGA83-PjTTfhxuyVXnP1O4-98Lsn153lYrtnl7XVfLDdsZiazUAYRCy31pDdZBas8BWyOakJUaSmk7DAo4GKlAQw1gULWNsLblZSfFgvDz23SMuVaIrh_nOOREh-BO-O6M7zK-O-E7FH-8U0xq</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Shan, Dongjing</creator><creator>Chao, Zhang</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2016</creationdate><title>Improved ℓ1-tracker using robust PCA and random projection</title><author>Shan, Dongjing ; Chao, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g841-57e036192a5981be47a201d83cea59b0549f1e6020846070b00816dc399d25f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Networks</topic><topic>Pattern Recognition</topic><topic>Short Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Dongjing</creatorcontrib><creatorcontrib>Chao, Zhang</creatorcontrib><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Dongjing</au><au>Chao, Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved ℓ1-tracker using robust PCA and random projection</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2016</date><risdate>2016</risdate><volume>27</volume><issue>4</issue><spage>577</spage><epage>583</epage><pages>577-583</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>In this paper, we propose an improved
ℓ
1
-tracker in a particle filter framework using robust principal component analysis (robust PCA) and random projection. At first we redesign the template set and its update scheme. Three target templates and several background templates combined with the trivial templates are used to represent the candidate images sparsely. One fixed target template is generated from the image patch in the first frame. The other two are dynamic target templates, called stable target template, and fast changing one used for long time and short time, respectively. Robust PCA is used to generate and update the stable target template, and fast changing target template is initialized by the stable one at certain times. The background templates are used to strengthen the ability of distinguishing background and foreground. Then, the large set of Haar-like features are extracted and compressively sensed with a very sparse measurement matrix for the
ℓ
1
-tracker framework. The compressive sensing theories ensure that the sensed features preserve almost all the information of the original features. Our proposed method is more robust than the original
ℓ
1
-method. Experiments have been done on numerous sequences to demonstrate the better performance of our improved tracker.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-016-0750-1</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-8092 |
ispartof | Machine vision and applications, 2016, Vol.27 (4), p.577-583 |
issn | 0932-8092 1432-1769 |
language | eng |
recordid | cdi_springer_journals_10_1007_s00138_016_0750_1 |
source | Springer Link |
subjects | Communications Engineering Computer Science Image Processing and Computer Vision Networks Pattern Recognition Short Paper |
title | Improved ℓ1-tracker using robust PCA and random projection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20%E2%84%931-tracker%20using%20robust%20PCA%20and%20random%20projection&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Shan,%20Dongjing&rft.date=2016&rft.volume=27&rft.issue=4&rft.spage=577&rft.epage=583&rft.pages=577-583&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-016-0750-1&rft_dat=%3Cspringer%3E10_1007_s00138_016_0750_1%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g841-57e036192a5981be47a201d83cea59b0549f1e6020846070b00816dc399d25f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |