Loading…

Rational Extension of the Newton Diagram for the Positivity of 1F2 Hypergeometric Functions and Askey–Szegö Problem

We present a rational extension of the Newton diagram for the positivity of 1 F 2 generalized hypergeometric functions. As an application, we give upper and lower bounds for the transcendental roots β ( α ) of ∫ 0 j α , 2 t - β J α ( t ) d t = 0 ( - 1 < α ≤ 1 / 2 ) , where j α , 2 denotes the sec...

Full description

Saved in:
Bibliographic Details
Published in:Constructive approximation 2020-02, Vol.51 (1), p.49-72
Main Authors: Cho, Yong-Kum, Chung, Seok-Young, Yun, Hera
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 72
container_issue 1
container_start_page 49
container_title Constructive approximation
container_volume 51
creator Cho, Yong-Kum
Chung, Seok-Young
Yun, Hera
description We present a rational extension of the Newton diagram for the positivity of 1 F 2 generalized hypergeometric functions. As an application, we give upper and lower bounds for the transcendental roots β ( α ) of ∫ 0 j α , 2 t - β J α ( t ) d t = 0 ( - 1 < α ≤ 1 / 2 ) , where j α , 2 denotes the second positive zero of Bessel function J α .
doi_str_mv 10.1007/s00365-019-09462-5
format article
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_journals_10_1007_s00365_019_09462_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00365_019_09462_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-s199t-c3b3e8c1ae889b719cdfc647cc2af8d8323a7a36765ddf19550ffd699ca95bdd3</originalsourceid><addsrcrecordid>eNotkEtOwzAYhC0EEqVwAVa-gMGOYzteVqWlSBVUPNaR40dIaZPKdlvKijtwFy7ATTgJScvqnxmNRvo_AC4JviIYi-uAMeUMYSIRlilPEDsCPZLSpLP4GPQwERylieCn4CyEOcaEZVT0wOZRxaqp1QKO3qOtQ6th42B8tfDebmPrbipVerWErvH7eNaEKlabKu66IhkncLJbWV_aZmmjrzQcr2vdbQaoagMH4c3ufj-_nj5s-fMNZ74pFnZ5Dk6cWgR78X_74GU8eh5O0PTh9m44mKJApIxI04LaTBNls0wWgkhtnOap0DpRLjMZTagSinLBmTGOSMawc4ZLqZVkhTG0D-hhN6x8VZfW5_Nm7dt3Q05w3qHLD-jyFl2-R5cz-gd2Z2YM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rational Extension of the Newton Diagram for the Positivity of 1F2 Hypergeometric Functions and Askey–Szegö Problem</title><source>Springer Link</source><creator>Cho, Yong-Kum ; Chung, Seok-Young ; Yun, Hera</creator><creatorcontrib>Cho, Yong-Kum ; Chung, Seok-Young ; Yun, Hera</creatorcontrib><description>We present a rational extension of the Newton diagram for the positivity of 1 F 2 generalized hypergeometric functions. As an application, we give upper and lower bounds for the transcendental roots β ( α ) of ∫ 0 j α , 2 t - β J α ( t ) d t = 0 ( - 1 &lt; α ≤ 1 / 2 ) , where j α , 2 denotes the second positive zero of Bessel function J α .</description><identifier>ISSN: 0176-4276</identifier><identifier>EISSN: 1432-0940</identifier><identifier>DOI: 10.1007/s00365-019-09462-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics ; Numerical Analysis</subject><ispartof>Constructive approximation, 2020-02, Vol.51 (1), p.49-72</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cho, Yong-Kum</creatorcontrib><creatorcontrib>Chung, Seok-Young</creatorcontrib><creatorcontrib>Yun, Hera</creatorcontrib><title>Rational Extension of the Newton Diagram for the Positivity of 1F2 Hypergeometric Functions and Askey–Szegö Problem</title><title>Constructive approximation</title><addtitle>Constr Approx</addtitle><description>We present a rational extension of the Newton diagram for the positivity of 1 F 2 generalized hypergeometric functions. As an application, we give upper and lower bounds for the transcendental roots β ( α ) of ∫ 0 j α , 2 t - β J α ( t ) d t = 0 ( - 1 &lt; α ≤ 1 / 2 ) , where j α , 2 denotes the second positive zero of Bessel function J α .</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><issn>0176-4276</issn><issn>1432-0940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkEtOwzAYhC0EEqVwAVa-gMGOYzteVqWlSBVUPNaR40dIaZPKdlvKijtwFy7ATTgJScvqnxmNRvo_AC4JviIYi-uAMeUMYSIRlilPEDsCPZLSpLP4GPQwERylieCn4CyEOcaEZVT0wOZRxaqp1QKO3qOtQ6th42B8tfDebmPrbipVerWErvH7eNaEKlabKu66IhkncLJbWV_aZmmjrzQcr2vdbQaoagMH4c3ufj-_nj5s-fMNZ74pFnZ5Dk6cWgR78X_74GU8eh5O0PTh9m44mKJApIxI04LaTBNls0wWgkhtnOap0DpRLjMZTagSinLBmTGOSMawc4ZLqZVkhTG0D-hhN6x8VZfW5_Nm7dt3Q05w3qHLD-jyFl2-R5cz-gd2Z2YM</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Cho, Yong-Kum</creator><creator>Chung, Seok-Young</creator><creator>Yun, Hera</creator><general>Springer US</general><scope/></search><sort><creationdate>20200201</creationdate><title>Rational Extension of the Newton Diagram for the Positivity of 1F2 Hypergeometric Functions and Askey–Szegö Problem</title><author>Cho, Yong-Kum ; Chung, Seok-Young ; Yun, Hera</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s199t-c3b3e8c1ae889b719cdfc647cc2af8d8323a7a36765ddf19550ffd699ca95bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Yong-Kum</creatorcontrib><creatorcontrib>Chung, Seok-Young</creatorcontrib><creatorcontrib>Yun, Hera</creatorcontrib><jtitle>Constructive approximation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Yong-Kum</au><au>Chung, Seok-Young</au><au>Yun, Hera</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Extension of the Newton Diagram for the Positivity of 1F2 Hypergeometric Functions and Askey–Szegö Problem</atitle><jtitle>Constructive approximation</jtitle><stitle>Constr Approx</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>51</volume><issue>1</issue><spage>49</spage><epage>72</epage><pages>49-72</pages><issn>0176-4276</issn><eissn>1432-0940</eissn><abstract>We present a rational extension of the Newton diagram for the positivity of 1 F 2 generalized hypergeometric functions. As an application, we give upper and lower bounds for the transcendental roots β ( α ) of ∫ 0 j α , 2 t - β J α ( t ) d t = 0 ( - 1 &lt; α ≤ 1 / 2 ) , where j α , 2 denotes the second positive zero of Bessel function J α .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00365-019-09462-5</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0176-4276
ispartof Constructive approximation, 2020-02, Vol.51 (1), p.49-72
issn 0176-4276
1432-0940
language eng
recordid cdi_springer_journals_10_1007_s00365_019_09462_5
source Springer Link
subjects Analysis
Mathematics
Mathematics and Statistics
Numerical Analysis
title Rational Extension of the Newton Diagram for the Positivity of 1F2 Hypergeometric Functions and Askey–Szegö Problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Extension%20of%20the%20Newton%20Diagram%20for%20the%20Positivity%20of%201F2%20Hypergeometric%20Functions%20and%20Askey%E2%80%93Szeg%C3%B6%20Problem&rft.jtitle=Constructive%20approximation&rft.au=Cho,%20Yong-Kum&rft.date=2020-02-01&rft.volume=51&rft.issue=1&rft.spage=49&rft.epage=72&rft.pages=49-72&rft.issn=0176-4276&rft.eissn=1432-0940&rft_id=info:doi/10.1007/s00365-019-09462-5&rft_dat=%3Cspringer%3E10_1007_s00365_019_09462_5%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-s199t-c3b3e8c1ae889b719cdfc647cc2af8d8323a7a36765ddf19550ffd699ca95bdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true