Loading…
Rational Extension of the Newton Diagram for the Positivity of 1F2 Hypergeometric Functions and Askey–Szegö Problem
We present a rational extension of the Newton diagram for the positivity of 1 F 2 generalized hypergeometric functions. As an application, we give upper and lower bounds for the transcendental roots β ( α ) of ∫ 0 j α , 2 t - β J α ( t ) d t = 0 ( - 1 < α ≤ 1 / 2 ) , where j α , 2 denotes the sec...
Saved in:
Published in: | Constructive approximation 2020-02, Vol.51 (1), p.49-72 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 72 |
container_issue | 1 |
container_start_page | 49 |
container_title | Constructive approximation |
container_volume | 51 |
creator | Cho, Yong-Kum Chung, Seok-Young Yun, Hera |
description | We present a rational extension of the Newton diagram for the positivity of
1
F
2
generalized hypergeometric functions. As an application, we give upper and lower bounds for the transcendental roots
β
(
α
)
of
∫
0
j
α
,
2
t
-
β
J
α
(
t
)
d
t
=
0
(
-
1
<
α
≤
1
/
2
)
,
where
j
α
,
2
denotes the second positive zero of Bessel function
J
α
. |
doi_str_mv | 10.1007/s00365-019-09462-5 |
format | article |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_journals_10_1007_s00365_019_09462_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00365_019_09462_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-s199t-c3b3e8c1ae889b719cdfc647cc2af8d8323a7a36765ddf19550ffd699ca95bdd3</originalsourceid><addsrcrecordid>eNotkEtOwzAYhC0EEqVwAVa-gMGOYzteVqWlSBVUPNaR40dIaZPKdlvKijtwFy7ATTgJScvqnxmNRvo_AC4JviIYi-uAMeUMYSIRlilPEDsCPZLSpLP4GPQwERylieCn4CyEOcaEZVT0wOZRxaqp1QKO3qOtQ6th42B8tfDebmPrbipVerWErvH7eNaEKlabKu66IhkncLJbWV_aZmmjrzQcr2vdbQaoagMH4c3ufj-_nj5s-fMNZ74pFnZ5Dk6cWgR78X_74GU8eh5O0PTh9m44mKJApIxI04LaTBNls0wWgkhtnOap0DpRLjMZTagSinLBmTGOSMawc4ZLqZVkhTG0D-hhN6x8VZfW5_Nm7dt3Q05w3qHLD-jyFl2-R5cz-gd2Z2YM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rational Extension of the Newton Diagram for the Positivity of 1F2 Hypergeometric Functions and Askey–Szegö Problem</title><source>Springer Link</source><creator>Cho, Yong-Kum ; Chung, Seok-Young ; Yun, Hera</creator><creatorcontrib>Cho, Yong-Kum ; Chung, Seok-Young ; Yun, Hera</creatorcontrib><description>We present a rational extension of the Newton diagram for the positivity of
1
F
2
generalized hypergeometric functions. As an application, we give upper and lower bounds for the transcendental roots
β
(
α
)
of
∫
0
j
α
,
2
t
-
β
J
α
(
t
)
d
t
=
0
(
-
1
<
α
≤
1
/
2
)
,
where
j
α
,
2
denotes the second positive zero of Bessel function
J
α
.</description><identifier>ISSN: 0176-4276</identifier><identifier>EISSN: 1432-0940</identifier><identifier>DOI: 10.1007/s00365-019-09462-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics ; Numerical Analysis</subject><ispartof>Constructive approximation, 2020-02, Vol.51 (1), p.49-72</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cho, Yong-Kum</creatorcontrib><creatorcontrib>Chung, Seok-Young</creatorcontrib><creatorcontrib>Yun, Hera</creatorcontrib><title>Rational Extension of the Newton Diagram for the Positivity of 1F2 Hypergeometric Functions and Askey–Szegö Problem</title><title>Constructive approximation</title><addtitle>Constr Approx</addtitle><description>We present a rational extension of the Newton diagram for the positivity of
1
F
2
generalized hypergeometric functions. As an application, we give upper and lower bounds for the transcendental roots
β
(
α
)
of
∫
0
j
α
,
2
t
-
β
J
α
(
t
)
d
t
=
0
(
-
1
<
α
≤
1
/
2
)
,
where
j
α
,
2
denotes the second positive zero of Bessel function
J
α
.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><issn>0176-4276</issn><issn>1432-0940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkEtOwzAYhC0EEqVwAVa-gMGOYzteVqWlSBVUPNaR40dIaZPKdlvKijtwFy7ATTgJScvqnxmNRvo_AC4JviIYi-uAMeUMYSIRlilPEDsCPZLSpLP4GPQwERylieCn4CyEOcaEZVT0wOZRxaqp1QKO3qOtQ6th42B8tfDebmPrbipVerWErvH7eNaEKlabKu66IhkncLJbWV_aZmmjrzQcr2vdbQaoagMH4c3ufj-_nj5s-fMNZ74pFnZ5Dk6cWgR78X_74GU8eh5O0PTh9m44mKJApIxI04LaTBNls0wWgkhtnOap0DpRLjMZTagSinLBmTGOSMawc4ZLqZVkhTG0D-hhN6x8VZfW5_Nm7dt3Q05w3qHLD-jyFl2-R5cz-gd2Z2YM</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Cho, Yong-Kum</creator><creator>Chung, Seok-Young</creator><creator>Yun, Hera</creator><general>Springer US</general><scope/></search><sort><creationdate>20200201</creationdate><title>Rational Extension of the Newton Diagram for the Positivity of 1F2 Hypergeometric Functions and Askey–Szegö Problem</title><author>Cho, Yong-Kum ; Chung, Seok-Young ; Yun, Hera</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s199t-c3b3e8c1ae889b719cdfc647cc2af8d8323a7a36765ddf19550ffd699ca95bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Yong-Kum</creatorcontrib><creatorcontrib>Chung, Seok-Young</creatorcontrib><creatorcontrib>Yun, Hera</creatorcontrib><jtitle>Constructive approximation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Yong-Kum</au><au>Chung, Seok-Young</au><au>Yun, Hera</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Extension of the Newton Diagram for the Positivity of 1F2 Hypergeometric Functions and Askey–Szegö Problem</atitle><jtitle>Constructive approximation</jtitle><stitle>Constr Approx</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>51</volume><issue>1</issue><spage>49</spage><epage>72</epage><pages>49-72</pages><issn>0176-4276</issn><eissn>1432-0940</eissn><abstract>We present a rational extension of the Newton diagram for the positivity of
1
F
2
generalized hypergeometric functions. As an application, we give upper and lower bounds for the transcendental roots
β
(
α
)
of
∫
0
j
α
,
2
t
-
β
J
α
(
t
)
d
t
=
0
(
-
1
<
α
≤
1
/
2
)
,
where
j
α
,
2
denotes the second positive zero of Bessel function
J
α
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00365-019-09462-5</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0176-4276 |
ispartof | Constructive approximation, 2020-02, Vol.51 (1), p.49-72 |
issn | 0176-4276 1432-0940 |
language | eng |
recordid | cdi_springer_journals_10_1007_s00365_019_09462_5 |
source | Springer Link |
subjects | Analysis Mathematics Mathematics and Statistics Numerical Analysis |
title | Rational Extension of the Newton Diagram for the Positivity of 1F2 Hypergeometric Functions and Askey–Szegö Problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Extension%20of%20the%20Newton%20Diagram%20for%20the%20Positivity%20of%201F2%20Hypergeometric%20Functions%20and%20Askey%E2%80%93Szeg%C3%B6%20Problem&rft.jtitle=Constructive%20approximation&rft.au=Cho,%20Yong-Kum&rft.date=2020-02-01&rft.volume=51&rft.issue=1&rft.spage=49&rft.epage=72&rft.pages=49-72&rft.issn=0176-4276&rft.eissn=1432-0940&rft_id=info:doi/10.1007/s00365-019-09462-5&rft_dat=%3Cspringer%3E10_1007_s00365_019_09462_5%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-s199t-c3b3e8c1ae889b719cdfc647cc2af8d8323a7a36765ddf19550ffd699ca95bdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |