Loading…

Polyhedral realizations for crystal bases of integrable highest weight modules and combinatorial objects of type An-1(1), Cn-1(1), A2n-2(2), Dn(2)

In this paper, we consider polyhedral realizations for crystal bases B ( λ ) of irreducible integrable highest weight modules of a quantized enveloping algebra U q ( g ) , where g is a classical affine Lie algebra of type A n - 1 ( 1 ) , C n - 1 ( 1 ) , A 2 n - 2 ( 2 ) or D n ( 2 ) . We will give ex...

Full description

Saved in:
Bibliographic Details
Published in:Letters in mathematical physics 2023-06, Vol.113 (3)
Main Author: Kanakubo, Yuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-s1140-e793c2a531c6bf9def38936948201fdbe8daf17f403044f90ebeffca9b057aae3
container_end_page
container_issue 3
container_start_page
container_title Letters in mathematical physics
container_volume 113
creator Kanakubo, Yuki
description In this paper, we consider polyhedral realizations for crystal bases B ( λ ) of irreducible integrable highest weight modules of a quantized enveloping algebra U q ( g ) , where g is a classical affine Lie algebra of type A n - 1 ( 1 ) , C n - 1 ( 1 ) , A 2 n - 2 ( 2 ) or D n ( 2 ) . We will give explicit forms of polyhedral realizations in terms of extended Young diagrams or Young walls that appear in the representation theory of quantized enveloping algebras of classical affine type. As an application, a combinatorial description of ε k ∗ functions on B ( ∞ ) will be given.
doi_str_mv 10.1007/s11005-023-01680-0
format article
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_journals_10_1007_s11005_023_01680_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11005_023_01680_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1140-e793c2a531c6bf9def38936948201fdbe8daf17f403044f90ebeffca9b057aae3</originalsourceid><addsrcrecordid>eNo1kM9KAzEQxoMgWKsv4CnHCkYnyW5391jqXyjoQc9LsjtpU7ZJSVKkPoZPbGz19H3DfDPD_Ai54nDLAaq7yLOUDIRkwKc1MDghI15WuSwlnJHzGNeQg6KEEfl-88N-hX1QAw2oBvulkvUuUuMD7cI-ptzQKmKk3lDrEi6D0gPSlV2uMCb6idkkuvH9bsgh5Xra-Y22TiUfbB72eo1dOoyn_RbpzDE-4dc3dP5vZsIxMRHZ3bssF-TUqCHi5Z-Oycfjw_v8mS1en17mswXLDxbAsGpkJ1QpeTfVpunRyLqR06aoBXDTa6x7ZXhlCpBQFKYB1GhMpxoNZaUUyjGRx71xG6xbYmjXfhdcPtlyaH9RtkeUbUbZHlC2IH8AYENolA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polyhedral realizations for crystal bases of integrable highest weight modules and combinatorial objects of type An-1(1), Cn-1(1), A2n-2(2), Dn(2)</title><source>Springer Nature</source><creator>Kanakubo, Yuki</creator><creatorcontrib>Kanakubo, Yuki</creatorcontrib><description>In this paper, we consider polyhedral realizations for crystal bases B ( λ ) of irreducible integrable highest weight modules of a quantized enveloping algebra U q ( g ) , where g is a classical affine Lie algebra of type A n - 1 ( 1 ) , C n - 1 ( 1 ) , A 2 n - 2 ( 2 ) or D n ( 2 ) . We will give explicit forms of polyhedral realizations in terms of extended Young diagrams or Young walls that appear in the representation theory of quantized enveloping algebras of classical affine type. As an application, a combinatorial description of ε k ∗ functions on B ( ∞ ) will be given.</description><identifier>EISSN: 1573-0530</identifier><identifier>DOI: 10.1007/s11005-023-01680-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Complex Systems ; Geometry ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Letters in mathematical physics, 2023-06, Vol.113 (3)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-s1140-e793c2a531c6bf9def38936948201fdbe8daf17f403044f90ebeffca9b057aae3</cites><orcidid>0000-0001-5322-5711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kanakubo, Yuki</creatorcontrib><title>Polyhedral realizations for crystal bases of integrable highest weight modules and combinatorial objects of type An-1(1), Cn-1(1), A2n-2(2), Dn(2)</title><title>Letters in mathematical physics</title><addtitle>Lett Math Phys</addtitle><description>In this paper, we consider polyhedral realizations for crystal bases B ( λ ) of irreducible integrable highest weight modules of a quantized enveloping algebra U q ( g ) , where g is a classical affine Lie algebra of type A n - 1 ( 1 ) , C n - 1 ( 1 ) , A 2 n - 2 ( 2 ) or D n ( 2 ) . We will give explicit forms of polyhedral realizations in terms of extended Young diagrams or Young walls that appear in the representation theory of quantized enveloping algebras of classical affine type. As an application, a combinatorial description of ε k ∗ functions on B ( ∞ ) will be given.</description><subject>Complex Systems</subject><subject>Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>1573-0530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo1kM9KAzEQxoMgWKsv4CnHCkYnyW5391jqXyjoQc9LsjtpU7ZJSVKkPoZPbGz19H3DfDPD_Ai54nDLAaq7yLOUDIRkwKc1MDghI15WuSwlnJHzGNeQg6KEEfl-88N-hX1QAw2oBvulkvUuUuMD7cI-ptzQKmKk3lDrEi6D0gPSlV2uMCb6idkkuvH9bsgh5Xra-Y22TiUfbB72eo1dOoyn_RbpzDE-4dc3dP5vZsIxMRHZ3bssF-TUqCHi5Z-Oycfjw_v8mS1en17mswXLDxbAsGpkJ1QpeTfVpunRyLqR06aoBXDTa6x7ZXhlCpBQFKYB1GhMpxoNZaUUyjGRx71xG6xbYmjXfhdcPtlyaH9RtkeUbUbZHlC2IH8AYENolA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Kanakubo, Yuki</creator><general>Springer Netherlands</general><scope/><orcidid>https://orcid.org/0000-0001-5322-5711</orcidid></search><sort><creationdate>20230601</creationdate><title>Polyhedral realizations for crystal bases of integrable highest weight modules and combinatorial objects of type An-1(1), Cn-1(1), A2n-2(2), Dn(2)</title><author>Kanakubo, Yuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1140-e793c2a531c6bf9def38936948201fdbe8daf17f403044f90ebeffca9b057aae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Complex Systems</topic><topic>Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanakubo, Yuki</creatorcontrib><jtitle>Letters in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanakubo, Yuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyhedral realizations for crystal bases of integrable highest weight modules and combinatorial objects of type An-1(1), Cn-1(1), A2n-2(2), Dn(2)</atitle><jtitle>Letters in mathematical physics</jtitle><stitle>Lett Math Phys</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>113</volume><issue>3</issue><eissn>1573-0530</eissn><abstract>In this paper, we consider polyhedral realizations for crystal bases B ( λ ) of irreducible integrable highest weight modules of a quantized enveloping algebra U q ( g ) , where g is a classical affine Lie algebra of type A n - 1 ( 1 ) , C n - 1 ( 1 ) , A 2 n - 2 ( 2 ) or D n ( 2 ) . We will give explicit forms of polyhedral realizations in terms of extended Young diagrams or Young walls that appear in the representation theory of quantized enveloping algebras of classical affine type. As an application, a combinatorial description of ε k ∗ functions on B ( ∞ ) will be given.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11005-023-01680-0</doi><orcidid>https://orcid.org/0000-0001-5322-5711</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 1573-0530
ispartof Letters in mathematical physics, 2023-06, Vol.113 (3)
issn 1573-0530
language eng
recordid cdi_springer_journals_10_1007_s11005_023_01680_0
source Springer Nature
subjects Complex Systems
Geometry
Group Theory and Generalizations
Mathematical and Computational Physics
Physics
Physics and Astronomy
Theoretical
title Polyhedral realizations for crystal bases of integrable highest weight modules and combinatorial objects of type An-1(1), Cn-1(1), A2n-2(2), Dn(2)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyhedral%20realizations%20for%20crystal%20bases%20of%20integrable%20highest%20weight%20modules%20and%20combinatorial%20objects%20of%20type%20An-1(1),%20Cn-1(1),%20A2n-2(2),%20Dn(2)&rft.jtitle=Letters%20in%20mathematical%20physics&rft.au=Kanakubo,%20Yuki&rft.date=2023-06-01&rft.volume=113&rft.issue=3&rft.eissn=1573-0530&rft_id=info:doi/10.1007/s11005-023-01680-0&rft_dat=%3Cspringer%3E10_1007_s11005_023_01680_0%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-s1140-e793c2a531c6bf9def38936948201fdbe8daf17f403044f90ebeffca9b057aae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true