Loading…

Schmidt number criterion via general symmetric informationally complete measurements: Schmidt number criterion via

The Schmidt number characterizes the quantum entanglement of a bipartite mixed state and plays a significant role in certifying entanglement of quantum states. We derive a Schmidt number criterion based on the trace norm of the correlation matrix obtained from the general symmetric informationally c...

Full description

Saved in:
Bibliographic Details
Published in:Quantum information processing 2024-12, Vol.23 (12)
Main Authors: Wang, Zhen, Sun, Bao-Zhi, Fei, Shao-Ming, Wang, Zhi-Xi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 12
container_start_page
container_title Quantum information processing
container_volume 23
creator Wang, Zhen
Sun, Bao-Zhi
Fei, Shao-Ming
Wang, Zhi-Xi
description The Schmidt number characterizes the quantum entanglement of a bipartite mixed state and plays a significant role in certifying entanglement of quantum states. We derive a Schmidt number criterion based on the trace norm of the correlation matrix obtained from the general symmetric informationally complete measurements. The criterion gives an effective way to quantify the entanglement dimension of a bipartite state with arbitrary local dimensions. We show that this Schmidt number criterion is more effective and superior than other criteria such as fidelity, CCNR (computable cross-norm or realignment), MUB (mutually unbiased bases) and EAM (equiangular measurements) criteria in certifying the Schmidt numbers by detailed examples.
doi_str_mv 10.1007/s11128-024-04611-7
format article
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_journals_10_1007_s11128_024_04611_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11128_024_04611_7</sourcerecordid><originalsourceid>FETCH-springer_journals_10_1007_s11128_024_04611_73</originalsourceid><addsrcrecordid>eNqdzk1ugzAQBWArUqWmPxfIyhdw68EE2EeJug97y6UDdWQbNGMicfvQNifo6m3ee_qE2IF-A63rdwaAolG6KJUuKwBVb8QW9rVRYEzxKJ6YL1oXUDXVVrTn7jv6ryzTHD-RZEc-I_kxyat3csCE5ILkJUbM5DvpUz9SdHltuBAW2Y1xCphRRnQ8E0ZMmV_EQ-8C4-s9n4U5HdvDh-KJfBqQ7GWcaT1gC9r-oO0f2q5o-4u2tfnf6gax0k8w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Schmidt number criterion via general symmetric informationally complete measurements: Schmidt number criterion via</title><source>Springer Nature</source><creator>Wang, Zhen ; Sun, Bao-Zhi ; Fei, Shao-Ming ; Wang, Zhi-Xi</creator><creatorcontrib>Wang, Zhen ; Sun, Bao-Zhi ; Fei, Shao-Ming ; Wang, Zhi-Xi</creatorcontrib><description>The Schmidt number characterizes the quantum entanglement of a bipartite mixed state and plays a significant role in certifying entanglement of quantum states. We derive a Schmidt number criterion based on the trace norm of the correlation matrix obtained from the general symmetric informationally complete measurements. The criterion gives an effective way to quantify the entanglement dimension of a bipartite state with arbitrary local dimensions. We show that this Schmidt number criterion is more effective and superior than other criteria such as fidelity, CCNR (computable cross-norm or realignment), MUB (mutually unbiased bases) and EAM (equiangular measurements) criteria in certifying the Schmidt numbers by detailed examples.</description><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-024-04611-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Data Structures and Information Theory ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Spintronics</subject><ispartof>Quantum information processing, 2024-12, Vol.23 (12)</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Sun, Bao-Zhi</creatorcontrib><creatorcontrib>Fei, Shao-Ming</creatorcontrib><creatorcontrib>Wang, Zhi-Xi</creatorcontrib><title>Schmidt number criterion via general symmetric informationally complete measurements: Schmidt number criterion via</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>The Schmidt number characterizes the quantum entanglement of a bipartite mixed state and plays a significant role in certifying entanglement of quantum states. We derive a Schmidt number criterion based on the trace norm of the correlation matrix obtained from the general symmetric informationally complete measurements. The criterion gives an effective way to quantify the entanglement dimension of a bipartite state with arbitrary local dimensions. We show that this Schmidt number criterion is more effective and superior than other criteria such as fidelity, CCNR (computable cross-norm or realignment), MUB (mutually unbiased bases) and EAM (equiangular measurements) criteria in certifying the Schmidt numbers by detailed examples.</description><subject>Data Structures and Information Theory</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqdzk1ugzAQBWArUqWmPxfIyhdw68EE2EeJug97y6UDdWQbNGMicfvQNifo6m3ee_qE2IF-A63rdwaAolG6KJUuKwBVb8QW9rVRYEzxKJ6YL1oXUDXVVrTn7jv6ryzTHD-RZEc-I_kxyat3csCE5ILkJUbM5DvpUz9SdHltuBAW2Y1xCphRRnQ8E0ZMmV_EQ-8C4-s9n4U5HdvDh-KJfBqQ7GWcaT1gC9r-oO0f2q5o-4u2tfnf6gax0k8w</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Wang, Zhen</creator><creator>Sun, Bao-Zhi</creator><creator>Fei, Shao-Ming</creator><creator>Wang, Zhi-Xi</creator><general>Springer US</general><scope/></search><sort><creationdate>20241212</creationdate><title>Schmidt number criterion via general symmetric informationally complete measurements</title><author>Wang, Zhen ; Sun, Bao-Zhi ; Fei, Shao-Ming ; Wang, Zhi-Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-springer_journals_10_1007_s11128_024_04611_73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data Structures and Information Theory</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Sun, Bao-Zhi</creatorcontrib><creatorcontrib>Fei, Shao-Ming</creatorcontrib><creatorcontrib>Wang, Zhi-Xi</creatorcontrib><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhen</au><au>Sun, Bao-Zhi</au><au>Fei, Shao-Ming</au><au>Wang, Zhi-Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schmidt number criterion via general symmetric informationally complete measurements: Schmidt number criterion via</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2024-12-12</date><risdate>2024</risdate><volume>23</volume><issue>12</issue><eissn>1573-1332</eissn><abstract>The Schmidt number characterizes the quantum entanglement of a bipartite mixed state and plays a significant role in certifying entanglement of quantum states. We derive a Schmidt number criterion based on the trace norm of the correlation matrix obtained from the general symmetric informationally complete measurements. The criterion gives an effective way to quantify the entanglement dimension of a bipartite state with arbitrary local dimensions. We show that this Schmidt number criterion is more effective and superior than other criteria such as fidelity, CCNR (computable cross-norm or realignment), MUB (mutually unbiased bases) and EAM (equiangular measurements) criteria in certifying the Schmidt numbers by detailed examples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-024-04611-7</doi></addata></record>
fulltext fulltext
identifier EISSN: 1573-1332
ispartof Quantum information processing, 2024-12, Vol.23 (12)
issn 1573-1332
language eng
recordid cdi_springer_journals_10_1007_s11128_024_04611_7
source Springer Nature
subjects Data Structures and Information Theory
Mathematical Physics
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Spintronics
title Schmidt number criterion via general symmetric informationally complete measurements: Schmidt number criterion via
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schmidt%20number%20criterion%20via%20general%20symmetric%20informationally%20complete%20measurements:%20Schmidt%20number%20criterion%20via&rft.jtitle=Quantum%20information%20processing&rft.au=Wang,%20Zhen&rft.date=2024-12-12&rft.volume=23&rft.issue=12&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-024-04611-7&rft_dat=%3Cspringer%3E10_1007_s11128_024_04611_7%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-springer_journals_10_1007_s11128_024_04611_73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true