Loading…
Nuclear bilinear operators on X×c0Y
We give the necessary and sufficient conditions for a bounded bilinear operator on X × c 0 Y to be nuclear. As application, we find the necessary and sufficient conditions for bilinear multiplication operators M V : E X × c 0 Y → F Z defined by M V x , y = V n x n , y n n ∈ N to be nuclear. For vari...
Saved in:
Published in: | Annals of functional analysis 2023, Vol.14 (3) |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-springer_journals_10_1007_s43034_023_00272_23 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Annals of functional analysis |
container_volume | 14 |
creator | Popa, Dumitru |
description | We give the necessary and sufficient conditions for a bounded bilinear operator on
X
×
c
0
Y
to be nuclear. As application, we find the necessary and sufficient conditions for bilinear multiplication operators
M
V
:
E
X
×
c
0
Y
→
F
Z
defined by
M
V
x
,
y
=
V
n
x
n
,
y
n
n
∈
N
to be nuclear. For various other similar type of operators, we give the necessary and sufficient conditions to be nuclear. |
doi_str_mv | 10.1007/s43034-023-00272-2 |
format | article |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_journals_10_1007_s43034_023_00272_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s43034_023_00272_2</sourcerecordid><originalsourceid>FETCH-springer_journals_10_1007_s43034_023_00272_23</originalsourceid><addsrcrecordid>eNpjYJAyNNAzNDAw1y82MTYwNtE1MDLWNTAwMjfSNWJi4DQyMLDQtTA3NWIBss2MLXXNjS0NOBh4i4uzDIDAxNLUyMyEk0HFrzQ5JzWxSCEpMyczD8TIL0gtSizJLypWyM9TiDg8PdkgkoeBNS0xpziVF0pzMxi7uYY4e-gWFxRl5qWnFsVn5ZcW5QGl4g0N4kFuioe4KR7opniwm-KNjMnTBQA9iz5x</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nuclear bilinear operators on X×c0Y</title><source>Springer Link</source><creator>Popa, Dumitru</creator><creatorcontrib>Popa, Dumitru</creatorcontrib><description>We give the necessary and sufficient conditions for a bounded bilinear operator on
X
×
c
0
Y
to be nuclear. As application, we find the necessary and sufficient conditions for bilinear multiplication operators
M
V
:
E
X
×
c
0
Y
→
F
Z
defined by
M
V
x
,
y
=
V
n
x
n
,
y
n
n
∈
N
to be nuclear. For various other similar type of operators, we give the necessary and sufficient conditions to be nuclear.</description><identifier>ISSN: 2639-7390</identifier><identifier>EISSN: 2008-8752</identifier><identifier>DOI: 10.1007/s43034-023-00272-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Functional Analysis ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Annals of functional analysis, 2023, Vol.14 (3)</ispartof><rights>Tusi Mathematical Research Group (TMRG) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-springer_journals_10_1007_s43034_023_00272_23</cites><orcidid>0000-0001-9295-2583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Popa, Dumitru</creatorcontrib><title>Nuclear bilinear operators on X×c0Y</title><title>Annals of functional analysis</title><addtitle>Ann. Funct. Anal</addtitle><description>We give the necessary and sufficient conditions for a bounded bilinear operator on
X
×
c
0
Y
to be nuclear. As application, we find the necessary and sufficient conditions for bilinear multiplication operators
M
V
:
E
X
×
c
0
Y
→
F
Z
defined by
M
V
x
,
y
=
V
n
x
n
,
y
n
n
∈
N
to be nuclear. For various other similar type of operators, we give the necessary and sufficient conditions to be nuclear.</description><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>2639-7390</issn><issn>2008-8752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYJAyNNAzNDAw1y82MTYwNtE1MDLWNTAwMjfSNWJi4DQyMLDQtTA3NWIBss2MLXXNjS0NOBh4i4uzDIDAxNLUyMyEk0HFrzQ5JzWxSCEpMyczD8TIL0gtSizJLypWyM9TiDg8PdkgkoeBNS0xpziVF0pzMxi7uYY4e-gWFxRl5qWnFsVn5ZcW5QGl4g0N4kFuioe4KR7opniwm-KNjMnTBQA9iz5x</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Popa, Dumitru</creator><general>Springer International Publishing</general><scope/><orcidid>https://orcid.org/0000-0001-9295-2583</orcidid></search><sort><creationdate>2023</creationdate><title>Nuclear bilinear operators on X×c0Y</title><author>Popa, Dumitru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-springer_journals_10_1007_s43034_023_00272_23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popa, Dumitru</creatorcontrib><jtitle>Annals of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popa, Dumitru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear bilinear operators on X×c0Y</atitle><jtitle>Annals of functional analysis</jtitle><stitle>Ann. Funct. Anal</stitle><date>2023</date><risdate>2023</risdate><volume>14</volume><issue>3</issue><issn>2639-7390</issn><eissn>2008-8752</eissn><abstract>We give the necessary and sufficient conditions for a bounded bilinear operator on
X
×
c
0
Y
to be nuclear. As application, we find the necessary and sufficient conditions for bilinear multiplication operators
M
V
:
E
X
×
c
0
Y
→
F
Z
defined by
M
V
x
,
y
=
V
n
x
n
,
y
n
n
∈
N
to be nuclear. For various other similar type of operators, we give the necessary and sufficient conditions to be nuclear.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s43034-023-00272-2</doi><orcidid>https://orcid.org/0000-0001-9295-2583</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2639-7390 |
ispartof | Annals of functional analysis, 2023, Vol.14 (3) |
issn | 2639-7390 2008-8752 |
language | eng |
recordid | cdi_springer_journals_10_1007_s43034_023_00272_2 |
source | Springer Link |
subjects | Functional Analysis Mathematics Mathematics and Statistics Original Paper |
title | Nuclear bilinear operators on X×c0Y |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20bilinear%20operators%20on%20X%C3%97c0Y&rft.jtitle=Annals%20of%20functional%20analysis&rft.au=Popa,%20Dumitru&rft.date=2023&rft.volume=14&rft.issue=3&rft.issn=2639-7390&rft.eissn=2008-8752&rft_id=info:doi/10.1007/s43034-023-00272-2&rft_dat=%3Cspringer%3E10_1007_s43034_023_00272_2%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-springer_journals_10_1007_s43034_023_00272_23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |