Loading…

Quantum Intelligent Control of Nitrogen Pressure in a Cryogenic Facility of Magnet Plant Test Bench

This paper presents the results of the implementation of information technology for the design of embedded intelligent control systems based on fuzzy logic, neural networks, genetic and quantum algorithms for the problem of nitrogen pressure stabilization in the cryogenic system of the test stand of...

Full description

Saved in:
Bibliographic Details
Published in:Physics of particles and nuclei 2024-06, Vol.55 (3), p.576-579
Main Authors: Zrelov, P. V., Nikiforov, D. N., Reshetnikov, A. G., Ulyanov, S. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c240t-5f6cd1da24b87af3d3162e1214953df2d07c8bbec92aace62db32facaef0e46d3
container_end_page 579
container_issue 3
container_start_page 576
container_title Physics of particles and nuclei
container_volume 55
creator Zrelov, P. V.
Nikiforov, D. N.
Reshetnikov, A. G.
Ulyanov, S. V.
description This paper presents the results of the implementation of information technology for the design of embedded intelligent control systems based on fuzzy logic, neural networks, genetic and quantum algorithms for the problem of nitrogen pressure stabilization in the cryogenic system of the test stand of the JINR VBLHEP magnet factory. A description of the current control system with a built-in quantum controller implementing coordination control is presented. The structure of the developed intelligent control system based on quantum and soft computing technologies is considered on the example of the nitrogen refueling mode. The efficiency of the system has been demonstrated experimentally.
doi_str_mv 10.1134/S1063779624030985
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_springer_journals_10_1134_S1063779624030985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1063779624030985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-5f6cd1da24b87af3d3162e1214953df2d07c8bbec92aace62db32facaef0e46d3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcPMPBLx2nMcRIgqVChRRzpHjrEuq1EG2c-jf11G5IXHa0bw0WkJugd0BiPT-E1gm8rzMeMoEKwt5RmYgBSSFlOV5xFFOJv2SXHm_YwwAZDEj-mNUNox7urQB-77bog20GmxwQ08HQ9-6iCJJ1w69Hx3SzlJFK3eY2E7ThdJd34XDZH5VW4uBrvtYSTfoA31Eq7-vyYVRvceb3zsnX4unTfWSrN6fl9XDKtFxdEikyXQLreJpU-TKiFZAxhE4pKUUreEty3XRNKhLrpTGjLeN4EZphYZhmrViTuDUq93gvUNT_7hur9yhBlZPX6r_fClm-Cnjo9du0dW7YXQ2zvwndAT8dmtE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum Intelligent Control of Nitrogen Pressure in a Cryogenic Facility of Magnet Plant Test Bench</title><source>Springer Nature</source><creator>Zrelov, P. V. ; Nikiforov, D. N. ; Reshetnikov, A. G. ; Ulyanov, S. V.</creator><creatorcontrib>Zrelov, P. V. ; Nikiforov, D. N. ; Reshetnikov, A. G. ; Ulyanov, S. V.</creatorcontrib><description>This paper presents the results of the implementation of information technology for the design of embedded intelligent control systems based on fuzzy logic, neural networks, genetic and quantum algorithms for the problem of nitrogen pressure stabilization in the cryogenic system of the test stand of the JINR VBLHEP magnet factory. A description of the current control system with a built-in quantum controller implementing coordination control is presented. The structure of the developed intelligent control system based on quantum and soft computing technologies is considered on the example of the nitrogen refueling mode. The efficiency of the system has been demonstrated experimentally.</description><identifier>ISSN: 1063-7796</identifier><identifier>EISSN: 1531-8559</identifier><identifier>DOI: 10.1134/S1063779624030985</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Particle and Nuclear Physics ; Physics ; Physics and Astronomy</subject><ispartof>Physics of particles and nuclei, 2024-06, Vol.55 (3), p.576-579</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1063-7796, Physics of Particles and Nuclei, 2024, Vol. 55, No. 3, pp. 576–579. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-5f6cd1da24b87af3d3162e1214953df2d07c8bbec92aace62db32facaef0e46d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zrelov, P. V.</creatorcontrib><creatorcontrib>Nikiforov, D. N.</creatorcontrib><creatorcontrib>Reshetnikov, A. G.</creatorcontrib><creatorcontrib>Ulyanov, S. V.</creatorcontrib><title>Quantum Intelligent Control of Nitrogen Pressure in a Cryogenic Facility of Magnet Plant Test Bench</title><title>Physics of particles and nuclei</title><addtitle>Phys. Part. Nuclei</addtitle><description>This paper presents the results of the implementation of information technology for the design of embedded intelligent control systems based on fuzzy logic, neural networks, genetic and quantum algorithms for the problem of nitrogen pressure stabilization in the cryogenic system of the test stand of the JINR VBLHEP magnet factory. A description of the current control system with a built-in quantum controller implementing coordination control is presented. The structure of the developed intelligent control system based on quantum and soft computing technologies is considered on the example of the nitrogen refueling mode. The efficiency of the system has been demonstrated experimentally.</description><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>1063-7796</issn><issn>1531-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcPMPBLx2nMcRIgqVChRRzpHjrEuq1EG2c-jf11G5IXHa0bw0WkJugd0BiPT-E1gm8rzMeMoEKwt5RmYgBSSFlOV5xFFOJv2SXHm_YwwAZDEj-mNUNox7urQB-77bog20GmxwQ08HQ9-6iCJJ1w69Hx3SzlJFK3eY2E7ThdJd34XDZH5VW4uBrvtYSTfoA31Eq7-vyYVRvceb3zsnX4unTfWSrN6fl9XDKtFxdEikyXQLreJpU-TKiFZAxhE4pKUUreEty3XRNKhLrpTGjLeN4EZphYZhmrViTuDUq93gvUNT_7hur9yhBlZPX6r_fClm-Cnjo9du0dW7YXQ2zvwndAT8dmtE</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zrelov, P. V.</creator><creator>Nikiforov, D. N.</creator><creator>Reshetnikov, A. G.</creator><creator>Ulyanov, S. V.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Quantum Intelligent Control of Nitrogen Pressure in a Cryogenic Facility of Magnet Plant Test Bench</title><author>Zrelov, P. V. ; Nikiforov, D. N. ; Reshetnikov, A. G. ; Ulyanov, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-5f6cd1da24b87af3d3162e1214953df2d07c8bbec92aace62db32facaef0e46d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zrelov, P. V.</creatorcontrib><creatorcontrib>Nikiforov, D. N.</creatorcontrib><creatorcontrib>Reshetnikov, A. G.</creatorcontrib><creatorcontrib>Ulyanov, S. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of particles and nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zrelov, P. V.</au><au>Nikiforov, D. N.</au><au>Reshetnikov, A. G.</au><au>Ulyanov, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Intelligent Control of Nitrogen Pressure in a Cryogenic Facility of Magnet Plant Test Bench</atitle><jtitle>Physics of particles and nuclei</jtitle><stitle>Phys. Part. Nuclei</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>55</volume><issue>3</issue><spage>576</spage><epage>579</epage><pages>576-579</pages><issn>1063-7796</issn><eissn>1531-8559</eissn><abstract>This paper presents the results of the implementation of information technology for the design of embedded intelligent control systems based on fuzzy logic, neural networks, genetic and quantum algorithms for the problem of nitrogen pressure stabilization in the cryogenic system of the test stand of the JINR VBLHEP magnet factory. A description of the current control system with a built-in quantum controller implementing coordination control is presented. The structure of the developed intelligent control system based on quantum and soft computing technologies is considered on the example of the nitrogen refueling mode. The efficiency of the system has been demonstrated experimentally.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063779624030985</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7796
ispartof Physics of particles and nuclei, 2024-06, Vol.55 (3), p.576-579
issn 1063-7796
1531-8559
language eng
recordid cdi_springer_journals_10_1134_S1063779624030985
source Springer Nature
subjects Particle and Nuclear Physics
Physics
Physics and Astronomy
title Quantum Intelligent Control of Nitrogen Pressure in a Cryogenic Facility of Magnet Plant Test Bench
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Intelligent%20Control%20of%20Nitrogen%20Pressure%20in%20a%20Cryogenic%20Facility%20of%20Magnet%20Plant%20Test%20Bench&rft.jtitle=Physics%20of%20particles%20and%20nuclei&rft.au=Zrelov,%20P.%20V.&rft.date=2024-06-01&rft.volume=55&rft.issue=3&rft.spage=576&rft.epage=579&rft.pages=576-579&rft.issn=1063-7796&rft.eissn=1531-8559&rft_id=info:doi/10.1134/S1063779624030985&rft_dat=%3Ccrossref_sprin%3E10_1134_S1063779624030985%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c240t-5f6cd1da24b87af3d3162e1214953df2d07c8bbec92aace62db32facaef0e46d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true