Loading…

Multivariate Bernstein inequalities for entire functions of exponential type in Lp(Rn)(0<p<1)

In (Rahman and Schmeisser in Trans. Amer. Math. Soc. 320: 91–103, 1990 ), the authors prove that the classical Bernstein inequality also holds for 0 < p ≤ 1 . We extend their result for a differential operator induced by polynomials and find the several equivalent conditions to the Paley–Wiener t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of inequalities and applications 2019-08, Vol.2019 (1)
Main Authors: Bang, Ha Huy, Huy, Vu Nhat, Rim, Kyung Soo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title Journal of inequalities and applications
container_volume 2019
creator Bang, Ha Huy
Huy, Vu Nhat
Rim, Kyung Soo
description In (Rahman and Schmeisser in Trans. Amer. Math. Soc. 320: 91–103, 1990 ), the authors prove that the classical Bernstein inequality also holds for 0 < p ≤ 1 . We extend their result for a differential operator induced by polynomials and find the several equivalent conditions to the Paley–Wiener theorem. As applications of the results, we also derive the Paley–Wiener type theorems for some special compact sets generated by number sequences, generated by polynomial, convex compact sets, in which we show that the Bernstein type inequalities have concrete upper bounds.
doi_str_mv 10.1186/s13660-019-2167-7
format article
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_journals_10_1186_s13660_019_2167_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1186_s13660_019_2167_7</sourcerecordid><originalsourceid>FETCH-springer_journals_10_1186_s13660_019_2167_73</originalsourceid><addsrcrecordid>eNqdjsFqAjEURYNQqLb9AHdvqYtp8zIyo-CqpdKFbkoXbiSE8qY8GV5ikin27zuDfoGry-Vw4Cg1Rf2MuKxeEpZVpQuNq8JgVRf1SI1Rm_4tzP5eTVI6am2wXC7G6rDr2sy_LrLLBK8UJWViARY6da7lzJSg8RFIMkeCppPvzF4S-AboHLwMwLWQ_wL1FmzD7FPmM70Oa5w_qrvGtYmervugzOb96-2jSCGy_FC0R99F6ZFFbYd4e4m3fbwd4m1d3iT9Az_BUCU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multivariate Bernstein inequalities for entire functions of exponential type in Lp(Rn)(0&lt;p&lt;1)</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Bang, Ha Huy ; Huy, Vu Nhat ; Rim, Kyung Soo</creator><creatorcontrib>Bang, Ha Huy ; Huy, Vu Nhat ; Rim, Kyung Soo</creatorcontrib><description>In (Rahman and Schmeisser in Trans. Amer. Math. Soc. 320: 91–103, 1990 ), the authors prove that the classical Bernstein inequality also holds for 0 &lt; p ≤ 1 . We extend their result for a differential operator induced by polynomials and find the several equivalent conditions to the Paley–Wiener theorem. As applications of the results, we also derive the Paley–Wiener type theorems for some special compact sets generated by number sequences, generated by polynomial, convex compact sets, in which we show that the Bernstein type inequalities have concrete upper bounds.</description><identifier>EISSN: 1029-242X</identifier><identifier>DOI: 10.1186/s13660-019-2167-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Applications of Mathematics ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of inequalities and applications, 2019-08, Vol.2019 (1)</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2196-0575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bang, Ha Huy</creatorcontrib><creatorcontrib>Huy, Vu Nhat</creatorcontrib><creatorcontrib>Rim, Kyung Soo</creatorcontrib><title>Multivariate Bernstein inequalities for entire functions of exponential type in Lp(Rn)(0&lt;p&lt;1)</title><title>Journal of inequalities and applications</title><addtitle>J Inequal Appl</addtitle><description>In (Rahman and Schmeisser in Trans. Amer. Math. Soc. 320: 91–103, 1990 ), the authors prove that the classical Bernstein inequality also holds for 0 &lt; p ≤ 1 . We extend their result for a differential operator induced by polynomials and find the several equivalent conditions to the Paley–Wiener theorem. As applications of the results, we also derive the Paley–Wiener type theorems for some special compact sets generated by number sequences, generated by polynomial, convex compact sets, in which we show that the Bernstein type inequalities have concrete upper bounds.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1029-242X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqdjsFqAjEURYNQqLb9AHdvqYtp8zIyo-CqpdKFbkoXbiSE8qY8GV5ikin27zuDfoGry-Vw4Cg1Rf2MuKxeEpZVpQuNq8JgVRf1SI1Rm_4tzP5eTVI6am2wXC7G6rDr2sy_LrLLBK8UJWViARY6da7lzJSg8RFIMkeCppPvzF4S-AboHLwMwLWQ_wL1FmzD7FPmM70Oa5w_qrvGtYmervugzOb96-2jSCGy_FC0R99F6ZFFbYd4e4m3fbwd4m1d3iT9Az_BUCU</recordid><startdate>20190814</startdate><enddate>20190814</enddate><creator>Bang, Ha Huy</creator><creator>Huy, Vu Nhat</creator><creator>Rim, Kyung Soo</creator><general>Springer International Publishing</general><scope>C6C</scope><orcidid>https://orcid.org/0000-0002-2196-0575</orcidid></search><sort><creationdate>20190814</creationdate><title>Multivariate Bernstein inequalities for entire functions of exponential type in Lp(Rn)(0&lt;p&lt;1)</title><author>Bang, Ha Huy ; Huy, Vu Nhat ; Rim, Kyung Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-springer_journals_10_1186_s13660_019_2167_73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bang, Ha Huy</creatorcontrib><creatorcontrib>Huy, Vu Nhat</creatorcontrib><creatorcontrib>Rim, Kyung Soo</creatorcontrib><collection>SpringerOpen</collection><jtitle>Journal of inequalities and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bang, Ha Huy</au><au>Huy, Vu Nhat</au><au>Rim, Kyung Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate Bernstein inequalities for entire functions of exponential type in Lp(Rn)(0&lt;p&lt;1)</atitle><jtitle>Journal of inequalities and applications</jtitle><stitle>J Inequal Appl</stitle><date>2019-08-14</date><risdate>2019</risdate><volume>2019</volume><issue>1</issue><eissn>1029-242X</eissn><abstract>In (Rahman and Schmeisser in Trans. Amer. Math. Soc. 320: 91–103, 1990 ), the authors prove that the classical Bernstein inequality also holds for 0 &lt; p ≤ 1 . We extend their result for a differential operator induced by polynomials and find the several equivalent conditions to the Paley–Wiener theorem. As applications of the results, we also derive the Paley–Wiener type theorems for some special compact sets generated by number sequences, generated by polynomial, convex compact sets, in which we show that the Bernstein type inequalities have concrete upper bounds.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13660-019-2167-7</doi><orcidid>https://orcid.org/0000-0002-2196-0575</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1029-242X
ispartof Journal of inequalities and applications, 2019-08, Vol.2019 (1)
issn 1029-242X
language eng
recordid cdi_springer_journals_10_1186_s13660_019_2167_7
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Analysis
Applications of Mathematics
Mathematics
Mathematics and Statistics
title Multivariate Bernstein inequalities for entire functions of exponential type in Lp(Rn)(0<p<1)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20Bernstein%20inequalities%20for%20entire%20functions%20of%20exponential%20type%20in%20Lp(Rn)(0%3Cp%3C1)&rft.jtitle=Journal%20of%20inequalities%20and%20applications&rft.au=Bang,%20Ha%20Huy&rft.date=2019-08-14&rft.volume=2019&rft.issue=1&rft.eissn=1029-242X&rft_id=info:doi/10.1186/s13660-019-2167-7&rft_dat=%3Cspringer%3E10_1186_s13660_019_2167_7%3C/springer%3E%3Cgrp_id%3Ecdi_FETCH-springer_journals_10_1186_s13660_019_2167_73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true